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1. INTRODUCTION

The need to develop a technology base for producing damage tolerant composite materials

is viewed as a key issue in obtaining wide acceptance of advanced composites for aircraft and

aerospace structural applications. This need is further emphasized by the damage tolerant

requirements set forth which must be met with if the material is to be used in primary structures.

Research work in recent years has demonstrated that failure processes associated with delamination

are of primary concern in structural composite materials. In order to predict the onset of

delamination and/or propagation of delamination in complex geometries (e.g. around a crack or

circular hole), a three-dimensional stress analysis model is required which can be applied to thick

laminates (i.e., laminates containing more than six plies). Although finite element codes based on

three- dimensional codes are available, they are very complex, time consuming and costly. In

addition, many of these codes are not capable of analyzing thick laminates. The global-local model

described in this report has that capability. To date, however, the solutions have been limited to

simple straight edges of laminates. In order to fully utilize this approach, numerical procedures are

required to solve problems with curved boundaries and sharp discontinuities.

Another key issue in today's composite technology, particularly in the utilization of

carbon-carbon composites in exit cone applications, is the r .ocessing. There is a history of failures

in three-dimensional carbon-carbon exit cones during processing. Such failures are not predictable

by current models. Two classes of models are required in the analytical treatment of composite

bodies under processing conditions. The first involves the study of transport phenomena. The

second is a mechanical model which can examine the stress, strain and displacement fields within the

body and forms the basis for failure prediction. Both these models are critical in determining the

effect of processing parameters on resulting residual stresses and developing failure criteria.

In this report, a description of research efforts towards the objective of developing

three-dimensional models capable of describing the behavior of thick laminated composites as well as
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the residual stresses in carbon-carbon composites, is given. On a broader level, both macro- and

micro-mechanics approaches have been considered. The macro-mechanics approach deals with the

problem of stress analysis in composite laminates under different loading conditions with various

types of boundary conditions (including complex ones such as stress-free edges). The solutions to

these problems are attempted by using numerical techniques such as finite difference and finite

element methods. The micro-mechanics approach deals with the determination of effective

thermoelastic properties and the stress distribution under three-dimensional mechanical and/or

hygrothermal loading.

The macro-mechanics study in this report includes an analytical procedure leading to a

qualitative understanding of the nature of stress field near the regions of steep stress gradients. One

aspect of this study is the free edge problem in a multi-layered composite laminate. The potentially

high stress gradients near the free edges may limit the load carrying capability of the structure. It

may also become a source of laminate failure. The presence of complex stress fields near the free

edges of laminates has been established experimentally. However, the analytical investigation of

the nature and magnitude of the free edge stresses by various researchers has lead to disparate

conclusions. As an extension, a reliable analytical procedure for solving the free edge problem may

also lead to an understanding of the various failure modes that have been shown to occur in

composite laminates [1,2,3,4]. Also, in practical applications of composite materials, a large

number of anisotropic layers are usually present. Consequently, an exact, three-dimensional

analysis of such a laminate becomes extremely complicated. The references mentioned before

indicate the importance of defining the stress fields in various layers of multi-layered laminate.

Hence it becomes important to establish an analytical procedure to consider all these aspects of

laminate behavior. In order to obtain an understanding regarding the procedures that are available

for solving free edge problems of laminates, a brief review or literature pertaining to general laminate

stress analysis is given.

The basis for the micro-mechanics study in this report is the fact that the mechanical

properties of a fiber-reinforced material, including the failure modes and mechanisms, are governed
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in part by the transfer of stresss between fiber and the matrix. This transfer occurs across the

interface between the components, and the properties of this interface, therefore, will affect the

properties of the composite. For example the strength of the interface in tension has a direct bearing

on the composite transverse and compressive strengths and delamination parallel to the fibers;

whereas, the interface shear strength principally affects the load transfer length; composite fracture

under conditions of fiber pullout and the deformation of the matrix. Recently, there has been an

increasing use of coated fibers as a reinforcement in some new application areas such as

carbon-carbon composites, electric composites, metal-matrix composites or ceramic composites

intended for high temperature applications. The coating applied on the fiber serves to enhance the

electrical conductivity, or the elastic stiffness or strength, or simply to serve as a chemical reaction

barrier. From this point of view, it is essential to understand the interaction between the coating,

fiber and matrix in order to arrive at conlusions regarding the nature of stress distribution and the

consequent failure mechanisms under mechanical and hygrothermal laods. This report includes a

model to study this aspect of composite behavior.

1.1 LITERATURE REVIEW

There exist in literature approximate theories for achieving reasonably accurate laminate

stress analysis. The most popular of these is the classical laminate theory which is an extension of

the well-known classical plate theory. This procedure [5], which included the bending-stretching

coupling, later incorporated laminate shear deformation thus resulting in a generalized

Reissner-Mindlin plate theory [6]. In these theories, the laminate was assumed to be in a state of

plane stress. The assumptions involved in these theories were found to be too restrictive for general

application [7,81. They lead to inaccurate prediction of interlaminar stresses at the free edges,

although they yield reasonbly accurate results for regions away from the free edges. A higher order

plate theory [9] in which the displacements no longer vary linearly, was applied [10] to evaluate the

interlaminar normal stress distribution in a free edge boundary value probl-em, but only on a plane of

symmetry. In the above mentioned theories, a displacement field is generally assumed that is

continuous across the entire thickness of the laminate. This, however, does not guarantee continuity
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of tractions at the interfaces between layers. Also, the traction boundary conditions for these

approaches are, in general, shown to be insufficient to guarantee the equilibrium of edge boundary

subregions [10].

The study of delamination phenomenon in structural composite laminates began with

analytical and experimental observations of the response of such bodies in the vicinity of a free

edge. In 1967, Hayashi [11] presented the first analytical model treating interlaminar stresses in

what has come to be known as the "free edge problem". Characteristically, this work focused on the

computation of interlaminar shear stress, as in the early stages of composite research interlaminar and

delamination effects were viewed as being synonymous with interlaminar shear. The presence of

interlaminar normal stress, being of a more subtle origin and also seemingly defying common

intuition, was not appreciated until many years after the pioneering work of Hayashi. The

development of the Hayashi model was based upon the implicit assumption that the in-plane stresses

within a given layer did not depend upon the thickness coordinate. The magnitude of the maximum

interlaminar shear stress was calculated to be a relatively large value in a glass epoxy [0/90]s

laminate. Unfortunately, however, owing to the omission of the interlaminar normal stress, the

computed stress field within each layer does not satisfy moment equilibrium.

The first reported experimental observations involving free edge delamination were made

by Foye and Baker [12). In that work, tremendous differences in fatigue life of boron-epoxy

composite laminates as a function of layer stacking sequence were reported. Severe delaminations

were witnessed in that work and were identified as the primary source of strength degradation in

fatigue.

With regard to free edge problems, a finite width laminate under uniform extensional

strain was first analyzed by Pipes and Pagano [13]. A finite difference scheme was used based on a

f:)rmulation assuming isotropic elasticity. Subsequently, various authors have conducted

investigations on this problem by using various techniques such as finite difference, finite element

and series solutions. References (2, 3, 4, 14] lead to an understanding of various failure modes that
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have been shown to occur in composite laminates. The bending and stretching of laminate

deformation and Reissner-Mindlin plate theory have been incorporated [5, 6] and higher order

classical laminate theory [9, 10] was applied to evaluate the interlaminar normal stress distribution,

but only at a plane of symmetry. When a large number of layers is present in the laminate

construction, contemporary models are incapable of providing precise solution of the local stress

fields in the vicinity of free edge. In an effective moduli global model [14], only the extensional

response of the regions was conducted, i.e. the flexural and flexural-extension coupling

characteristics of laminated bodies were ignored. A global representation of a three dimensional

laminate model [151 is a generalization and improvement of the material model given in reference 14.

In the literature on the finite element solutions [14, 16], the traction free edge conditions are satisfied

in weighted integrated sense or lead to oscillating solutions near the edges. Singular hybrid stress

finite element models are also employed [17, 18, 19]. The free edge stresses in layered plates have

also been evaluated by using eight nodes isoparametric elements [20]. It was shown [19, 20] that

the laminate idealization for a reasonably accurate finite element analysis had to be very fine, i.e. a

quarter of the laminate was divided into about 600 elements. No more than six layers would be

considered for numerical calculations. For moderately large number of plies, these approaches will

lead to computer storage/economic difficulties. In other studies a singular hybrid finite element

model [21] is employed. The finite difference method reported [13] leads to difficulties in calculating

transverse shear stresses at the free edges. More recently, a three-dimensional finite difference

scheme has also been developed [22]. In addition, a perturbation technique [23] and a series

solution [24) have also been presented for obtaining the solution to the free edge problem.

In order to circumvent the complexity of an exact three dimensional elastic analysis, while

at the same time being a reasonably precise method of studying the stress fields in laminate with

moderately large number of layers, a unified tractable model for the elastic response of the individual

plies of the laminate has been introduced [24]. But this model, termed the local model, in which

each layer is represented as a homogeneous, anisotropic continuum, becomes intractable as the

number of layers becomes large. To overcome this difficulty, the local model has been recently

extended into a formulation of global-local variational model [25]. In this model, a predetermined
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area, termed local region, of interest is represented by Reissner's functional that involves both

stresses and displacements. In this local model, the interface continuity, including three

displacement components and the normal and shear stress components associated with the thickness

direction are satisfied. For a large number of layers (exceeding 6), the exponential parameter

becomes very large and consequently causes computer overflow.

On the other hand, for the rest of the region other than the local region, termed global

region, the principle of potential energy is applied following an assumed, elementary displacement

field and a consideration of effective or smeared laminate moduli. While the local model employs

the theory presented in [24], the global model is based on higher order laminate theory given in [9].

The present report addresses the problem encountered by the previous methods of reasonably

accurate analysis of composite laminates [26]. In references 25 and 26, a class of boundary value

problems with free edges has been solved and the results are presented. This numerical problem

pertains to the case of a laminate of finite width, similar to that of the case of plane strain, in which

the stresses depend only on the width and thickness coordinates. The laminate is subjected to a

uniform axial strain in the length direction. The solution was sought in the form of an exponential

series for the field variables. It was found [25] that for a large number of layers, the exponential

parameter becomes very large with a consequent exceeding of the computer limits. In other words,

the number of layers in the laminate had to be restricted. The largest number of layers that could be

considered by this numerical solution technique was 6.

This report describes some attempts at alternative solution techniques to circumvent the

above mentioned difficulty. One of the techniques is based on the use of an available computer

library subroutine to solve a set of linear differential equations with an appropriate number of

boundary conditions. Yet another method involves the finite difference modeling of the

one-dimensional problem mentioned before. All these methods are applicable to the local model

only when each layer of the laminate is considered individually with regard to the satisfaction of the

layer equilibrium and the interlayer continuity conditions. All these are satisfied exactly once the set

of in-plane stress components are assumed and Reissner's variational functional invoked.
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The present report also describes a numerical method of analysis which is applicable to

the global-local model of the laminate. This method involves a discretization process using finite

element technique. A current research literature survey was conducted with particular reference to

the finite element models based on mixed variational principles (Reissner's principle, in this case).

The purpose of this literature review was to establish the guidelines for the application of present

finite element technique to the global-local model of the laminate.

It has been established that the failure mechanisms and the mechanical properties of

fiber-reinforced composites are controlled in part by the transfer of stress between the fiber and the

matrix [271. For theoretical analysis (a micro-mechanics approach), the interphase region between

the fiber and the matrix can be modeled as a coating [281. A single fiber test [29] has frequently been

used to characterize the fiber-matrix interface ( or rather interphase 'since the region adjacent to

the fiber has its unique properties ). Quite often, the interphase region is a product of the processing

conditions involved in the manufacture of the composite.

In the case of continuous fiber composite, a number of works [30 -34] have been made to

compute the stress field in a composite subjected to thermo-mechanical loadings, or to predict its

stiffness. The model used in the above works is either a two-phase model consisting of inner

cylinder with fiber properties and an outer cylinder with the properties of the matrix , or a

three-phase model in which one more cylinder is added to the outside of the two-phase model with

the composite properties. Recently, Mikata and Taya [35] have studied the stress field in a coated

continuous fiber composite which requires a four-phase model that consists of fiber, coating, matrix

and surrounding composite body. The material properties of the surrounding body (composite) were

obtained by using a rule of mixtures. The solution to the stress distribution was determined with the

composite subjected to three independent boundary conditions, namely, axisymmetric temperature

change, uniaxial applied stress and biaxial applied stress.

7



1.2 PROJECT SUMMARY

This report contains analytical models developed for the prediction of three-dimensional

response of composites. Two aspects of the problem of stress and failure analysis are considered.

One pertains to a macromechanical model in which the development of a global-local fmite element

method for stress analysis of composite laminates is given. The other aspect incorporates a micro-

mechanics approach leading to a model, termed NDSANDS, for the stress and failure analysis of

carbon-carbon composites. Again, the global-local formulation for the laminate stress analysis is

numerically solved by two different finite element techniques. The NDSANDS model incorporates

the effects of processing by evaluating the residual stresses due to hygrothermal effects. A number of

problems has been solved for illustrating the effectiveness of all the above mentioned models. It is

believed that these models are of extreme importance in studying the optimum design parameters in

structural composites.
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2. SOLUTION TO LOCAL MODEL

This section refers to the attempts for obtaining solution to the local model [24].

Specifically, the first part of this section deals with an attempt to obtain a direct solution by using a

library subroutine to solve a set of linear equations. The second part refers to a one-dimensional

finite difference scheme to solve the problem of an infinitely long laminate subjected to uniform axial

strain. As mentioned in the previous section, the exponential series solution to the field equations

for the local model of the laminate encountered difficulties when implemented on the computer. This

has been reported in reference 26 where a class of boundary value problems with free edges has been

solved and the results presented. This numerical problem pertains to the case of a laminate of finite

width, similar to that of the case of plane strain, in which the stresses depend only on the width

coordinate y and the thickness coordinate z. The laminate is subjected to a uniform axial strrin in the

x-direction. The solution was sought in the form of an exponential series as

ff= Fk eXY (2.1)

where fk represents the dependent variables for the k th layer and Fk denotes the coefficients for the

corresponding layer. After substituting eq. (2.1) into the appropriate field equations obtained from

theoretical developments for the local model [24] the values of X were obtained by setting the

determinant of the coefficients to zero. It was found [24] that for a large number of layers, X became

so very large as to exceed the computer limits. In other words, the number of layers in the laminate

had to be restricted. The largest number of layers that could be considered by this numerical solution

technique was six. The present section discusses an alternative mathematical approach to the

solution to circumvent the above mentioned difficulty. This method invloves the use of an available

computer library subroutine to solve a set of linear differential equations.
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2.1 DIRECT SOLUTION

One of the alternative solution procedures (direct solution) considered makes use of an

IMSL subroutine, DVCPR, to solve a set of equations. The purpose of this subroutine is to solve a

system of ordinary differential equations with boundary conditions defined at two points. The

particular subroutine DVCPR, for example, is based on a variable step size finite difference method.

The fundamental idea was to cast the set of second order linear differential equations governing the

behavior of each layer of the laminate into a set of single order equations. This process would result

in a set of additional equations and all the equations could then be solved simultaneously by using the

computer subroutine.

The variables in the set of governing equations are the weighted displacement functions

and the interlaminar stress components. For any layer, these are U, V, W, 11, V , X, *, P, ,p2,

s, , s 2 , t, , t2 where the first six refer to the weighted displacement functions and the three pairs of

the last six refer to the interlaminar stresses associated with the thickness direction. The numerical

problem for solution consists of a finite width laminate subjected to a uniform axial strain ex = e.

By virtue of the geometry, the stress components and the displacements depend only on y and z

coordinates. Consequently, all the derivatives in the governing equations are with respect to y

only, thus reducing the solution procedure to that of a one-dimensional problem. It can be seen

from equations (6) through (9) of reference 26 that there exist single order derivatives in the

interlayer continuity conditions and the boundary conditions on the upper and lower surfaces.

However, in the layer equilibrium equations (5) of reference 26, the highest order of derivative is 2.

Hence, a new set of variables was first written as, for example,

V = V' etc. (2.1.1)

where prime refers to differentiation with respect to y. The new variables with bars on them were
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also considered as unknowns in further formulation. Thus, the layer equilibrium equations were

written as single order differential equations in terms of variables U, U etc.

In accordance with the requirements of the computer subroutine, the next step was to

derive a set of equations of the form:

(Uk), =i f(Uk,Vk,Wk, k, k Xk, k,Uk, Vk,Wk,

Ck, Vk, ik, k, pl k ' i2 k ' Slk ' S2k ' t lk ' t2k (2.2)

where superscript k refers to the layer.

It is to be noted that the right hand side function in (2.2) does not contain any derivative.

Similar equations can be written for each of the dependent variable appearing with function

parantheses in the above equation. It was found during the course of such a procedure that one of

the weighted displacement functions, viz., 0 could be eliminated by using the lower surface

condition (for obtaining 1 ) and a judicious combination of intersurface continuity conditions and

the particular layer equilibrium equation that involves k (for obtaining 0)k, k > 1 ). Thus, only

six of the seven layer equilibrium equations needed to be considered for final solution. The O 's

obtained in this manner were used elsewhere.

Also, two more sets of equations were obtained, one by equating the expression for

( k), from the interlayer continuity conditions between layers k and k-I and the other from one

interlayer continuity condition between k and k-1 and a layer equilibrium equation involving *k.

Hence, a set of linear simultaneous equations was obtained for derivative functions (Uk)' , (Vk)y,

(Uk)', (Vk)', etc. in terms of the variables Uk, Vk , Uk, Vk, etc. These functions could be

easily established by means of a simple simultaneous equation solver on the computer. The IMSL

library subroutine DVCPR, was thus utilized for obtaining the solution for ik , Vk , etc.

At this juncture, it is important to note how the boundary conditions at the free edge were
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used in the solution procedure. Again the weighted displacement paameter € was eliminated from

the appropriate expressions ( the expressions for NY and Nxy in this case ). This was done by

obtaining one equation (for each layer) by considering simultaneously Ny and Nxy at y = +b

and again at y = -b. The final boundary equations obtained by setting y = ± b in various

expressions such as Vy, My, Mxy , etc. contained the weighted displacement parameters and the

interlaminar stress components specified at the edges y = ± b.

Finally, there were (9N-2) equations obtained by the layer equilibrium equations and

intersurface continuity and top and bottom surface conditions. To these were added 6N equations

of the type (2.1), thus adding to (15N-2) equations. The unknown parameters were given as

follows:

t, = s, = 0 ; pN= sN= t2 N =0 si andti.... 2(N-1)

UVW, D9 . . X .................... 6N

U,V,W, a , ....................... 6N (2.3)

Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (N -1) + I

Total ............ (15N-2)

In using the library subroutine, (15N-2) single order linear differential equations were

considered for solution. The number of boundary conditions are listed as follows:

Vyk (±b)= 0

Mk (±b) = 0 ....... k=1,2,3,... ,N
Mxyk (±b) = 0

s2k (±b) = 0 ... k=1,2,3,... ,N-1

combination of equations for Nk and NxYk at ± b .... k = 1,2,3,.... N

equations of type Uk' - Uk = 0 . . k = 1,2,3 ..... , N

................................ (2.4)

Thus, the total number of boundary conditions is (15N-2).
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In this method of solution however, two main difficulties were encountered:

(i) The reduction of the number of equations to be solved by elimination made

the method very complicated to code,

(ii) The Gauss-Jordan computer subroutine that reduced the first order equations to

the form given in (2.2) to be used later on in the differential equation solver

DVCPR encountered problems of singularity.

Thus it was decided not to eliminate *, but instead to retain the original set of equations

because the effect of reducing the number of equations to be solved by eliminating * was not found

to be significant enough to offset the additional coding involved. The cause for the singularity

arising in the computer subroutine was traced to be due to the coupling of the displacement

parameters Wk' and Xk in the layer equilibrium equation 6 of reference 26. This necessitated the

introduction of another variable

Hk = k - = Wk- Zk' (2.5)

This substitution had an additional advantage of reducing the number of variables to be

solved for in each layer by one. After carrying out the above substitution and judiciously

manipulating the equations, a non-singular system of equations was obtained that could subsequently

be reduced to the form illustrated by equation (2.2), using a Gauss-Jordan elimination algorithm.

If the interlaminar equations

p2k = plk+l

S2 k = S1k+1 and (2.6)

t2 k = tlk+l

were incorporated into the layer equilibrium equations and the interlaminar continuity conditions,

then the number of unknowns in each layer could be reduced to 15, viz., U, V, W, 0, V, X, 0,

U, V, H, al, , P, ,S and t1 . Additionally there were three extra variables p2N, s2N and

t2 N in layer N (at the free surface of the laminate). Since the laminate was unstressed at its surface
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p- = sP = t2N = 0 (2.7)

Furthermore, in the first layer, due to the symmetry of the layer about the midplane

s11 = t = 0 (2.8)

Hence the total number of variables to be solved for as well as the number of equations became

(15N-2).

The library subroutine DVCPR required that there be the same number of boundary

conditions as the number of equations. These (15N-2) boundary conditions were taken as

Vyk (±b) Myk (b) Mx k (±b) = 0 ... k=1,2,..N

NYk (+b) - Nyk (-b) = 0

Nxyk (+ b) - Nxyk (- b) = 0 .. k = 1,2,3,.. N-1

Nyk(+b) = Nxyk(+b) = 0

s2 k (±b) = 0 ... k=1,2,3,..N

and equations of type Uk' - Uk = 0 ... k = 1,2,3,... N (2.9)

The above system of first order differential equations and boundary conditions could finally be

solved by the previously mentioned library subroutine.

Even in this method, some difficulties were encountered due to the fact that some of the

layer equilibrium equations and the interlaminar continuity conditions had to be differentiated in order

to achieve a form similar to the one shown by equation (2.1.2). In doing so the original problem is

weakened since the order of some of the equations is increased.

Hence in order to preserve the nature of the original problem and to avoid singularity

situation, it was decided to construct a finite difference model for the problem.
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2.2 FINITE DIFFERENCE SOLUTION

Since the free edge problem had been reduced to essentially a one-dimensional problem

(in the width dimension y ) [ 26], the finite difference model was based on formulas for the first

and second derivatives derived from the quadratic Lagrange polynomials in one variable. Since

these formulas are of order two, the errors vary as the square of the step size.

For the problem on hand, variable step size was chosen over fixed step size. This was

done because the computations could then be made more efficient by making the step size at regions

of high stress gradients very small and choosing step sizes for other regions according to the desired

accuracy of the results desired. Furthermore, the need for ficticious nodes adjacent to but outside

the boundaries are eliminated. This was accomplished by using forward and backward difference

formulas at the left and right boundaries respectively. At all interior nodes central difference

formula was used.

Finite difference solutions to similar problems have been given while studying the elastic

response of involute bodies [27,28]. These methods are direct methods used to solve the resulting

set of finite difference equations. Since the number of these equations was quite large, the limits of

available computer memory was attained even while solving relatively small size problems. In order

to reduce the storage burden on the computers and to make the calculations more efficient, the

iterative Gauss-Siedel method was used in the current solution technique to solve the finite difference

equations. Another attractive feature of using the iterative method was that by reducing the memory

requirement of this procedure the maximum problem size could be increased. However, this

method failed to yield good results.

The difficulty seems to be in the fact that the way the original problem is presented, the

number of boundary conditions is less than the number of field equations available for solution. It

has been found [27, 28] that this leads to inconsistencies in standard numerical methods. Thus
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some of the field equations that normally are satisfied at all interior nodes may be enforced at the

boundaries so that they supplement the boundary conditions. This has been shown in the above

mentioned references to yield satisfactory results.
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3. STIFFNESS FINITE ELEMENT METHOD FOR GLOBAL-LOCAL

MODEL

The global-local variational approach has already been numerically solved by an

exponential series solution [25] with limited success. One global-local interface had been considered

in that procedure. In the present section, a discretization procedure using finite element method of

solving the laminate problem is given based on the same global-local approach. In general, instead

of considering the first variation of the energy functional representing the laminate, the stresses and

displacements are written in terms of the nodal degrees of freedom of an element of chosen shape.

The solution to the problem is then sought by making the functional stationary with respect to each of

the nodal degrees of freedom. At first, a current literature survey was conducted pertaining to the

finite element models based on mixed variational principles (Reissner's principle, in this case). The

purpose of this literature review was to establish the guidelines for the application of the present

finite element technique to the global-local model of the laminate. The variational functional for the

entire laminate consists of two distinct energy functionals - one, a total potential energy functional

characterizing the global region and the other, a Reissner variational functional for a predetermined

local region of interest (figure 1). The finite element discretization based on these variational

principles is individually well documented [38, 39,40,41]. The potential energy principle is very

commonly used as the basis for a displacement -based compatible finite element model. The

Reissner variational principle is intrinsically multifield in which the primary field variables

characterizing the element behavior are both stresses and displacements.

Following the theoretical development for the global-local model, the variational

functional for the entire laminate is written to represent both 0ie global region and N layers of the

local region as follows:

N

= JWp(uieij)dv + X f [ 1/2 aij(uij + uji) " Wc(aij ,eij)]k dvk

Vg k=I Vk

- j iUids (3.1)

17



In the above expression, Wp (ui , eij) is the potential energy of the global region and

Wc (aij , eij ) is the complementary energy corresponding to the local region. The terms Vg and Vk

refer to the volume domains of the global and local regions respectively. It should be noted that Vk

in particular refers to a local layer k in the local domain which is assumed to have N local layers.

In the abbreviated form, the above expression can be written as

= Cg + 7Cl + gs (3.2)

where ltg, referring to the first integral of (3.1), is the potential energy for the global region, and

7rI is the Reissner variational functional for N layers in the local region. 7r 1 is the summation

term (k = 1 to N) in the equation (3.1). Finally, 7C., referring to the last term of (3.1) corresponds

to the potential energy of the prescribed surface tractions.

3.1 ELEMENT MODELING FOR THE GLOBAL REGION

By defining the constitutive laws as

oYi =Cij ( jo + z Kjo - ej ) (i~j = 1,2,3,6)

ai= Cij (jO + z lj + z2 /2 O)( ij = 4,5) (3.3)

the potential energy for the global region is written as

7C = 7g8 + 2tge (3.4)

In the above expressions, e. and e are midsurface and expansional strains respectively,

and Kc and P are curvature parameters characterizing strains at any distance z from the surface.

These through-the-thickness variations of strains follow those for displacements on the global region

(i.e., a linear variation for inplane displacements and a quadratic variation for the transverse
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displacement ). 7cge and cge in (3.4) refer to the volume integrals over volume domain Vg of

th global region in terms of the mechanical and expansional strains respectively. Because of the

polynomial variation with respect to z , of the displacements (and hence of strains), it is possible to

write each of the integrals 1g and ltge as a sum of several integrals with various powers of z

appearing as coefficients. In other words, it is possible to carry out the integration, with respect to

z, of the stiffness terms Cij in conjunction with various powers of z to obtain the moduli

corresponding to the entire global domain. These moduli are defined as

W/2

Aij, Bij, Dij, Fij. Hij ) = J (l,z,z2,z3,z4 ) Cij dz (3.5)

-2

where H, appearing in the integration limits, is the total thickness of global domain of layers. This

process reduces the volume integral to an area integral in terms of the x and y coordinates. For

this purpose, the various components of strains and curvatures are written in vector form as follows:

8 0)T = ( o £1 r-30 oe)T

( O)T = E4o  E o)T

( )jT = {C 1 K2  K3  V6 )T

r)T X (j4 K5 )T

p3 )T = p14 0 5 )T

e )T = [el 2 e3 e6 )T (3.6)

Then the integral corresponding to the mechanical strains in the global region

can be written as

cge = 1/2f(7nlg +z 7 2 ge + z2 3 g+ Z3 n 4 gC + Z4 Ir 5g )dv (3.7)

Vg

where for example
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gIge  - { ( T[C 1 1]( (EqI + ( to IT[C22] ( o I + 2 ( Fo)T[C 2 1] ( oI (3.8a)

C2g e  - 2( KIT[CI] oI + 2( i)T[C22](toI + 2 ( T[E 2 1]IeoI +

2 ( Co IT [ C211 { R } (3.8b)

and so on.

The material stiffness matrix in the above expressions are defined as

CI1 C 12  C 13  C 16

I] -- C12 C22  C23  C26

C13 C23  C33  C36

C16 C 2 6  C36  C66

'Ec22] C1 [C45::
C45 c55-

IC21] [C14 C24 C34 C461

C15 C25  C35  C56

In a similar way, the expression for 7Cge can also be written as

Irge = J( j1ge + z I 2 ge + z 2 7 3ge ) dv (3.9)

Vg

where for example,

lge = {eo }T[Cl](e} + (Co )T[ C21 ](e} (3.9a)

7r2 ge = (IK )T[ 1 1 j(e) + ( Kc)T( C 2 1 ](e) (3.9b)
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For the finite element description, the vector of variables for the global region is

(u}T = [ i,V,U*,V*,Wi,W*, W)T (3.10)

where d , V, etc. are the weighted displacement parameters that are related to the midsurface

displacements and curvature terms [24] by the following relations:

uo= 1/2 5

vO= 1/2 i etc. (3.11)

and by definition,

Hj2

( ,,w*,,) = f w (l,2z/-12 , 4z/- 2 ) 2/H dz

-H/2

It is now possible to write each of the vector quantities in (3.6) in terms of the vector of

variables (u . For example,

(e o ) = [L l ] [L 2 ](u) (3.11a)

(0) = [L I ][L 2 ] { u) (3.11b)

() } = [L 3 ][L4 ][i) (3.11c)

{ } = {L 3 ) w* (3.11 d)

{[3 } = {L5 )[L 6 ] { }  (3.11e)

In the above expressions, there are two other vectors {Fi ) and ( f) on the right hand

side ( in addition to a single weighted displacement parameter w* ) which are but parts of the vector

of complete variables. That is,

{)i}T = (u* v* * , (3.12a)

[ ) T = { @ v })T (3.12b)

All the other matrices appearing in the set of equations (3.11) are given below.
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alax 0 0

[LI = al)Y 0 (3.13a)

1 0 0 0 0

[L1]x 0

L/2 0 0 0 0 0 0

[ L2 1  0 1/2 0 0 0 0 0 (3.13b)

0 0 0 0 0 3/H4 0

[l 3 x 1 0 (3.13c)

0 0 0 0 9/8 0 -15/8

[ L21 ] 0 0 3/H 0 0 0 0 (3.13d)

0 0 0 3/li 0 0 0

[L3] [L I ]  (3.13e)

3/H 0 0 0

[ L4 ] = 0 3/H 0 0 (3.130

0 0 -15/H2 45/r-i2

{L3 } = 3/H (a/o'y a/ax}T (3.13g)

{ L5 ) /ay a/igx }T (3.13h)
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[L6 1 -.15/H2 01

0 45/H2 (3.13i)

3.2 DISCRETIZATION PROCEDURE FOR THE GLOBAL REGION

The nature of the interpolation functions, which describe the mapping of the variables

chosen for the element, is derived from the governing equations for the global domain. The

variables are given in (3.10). From the stress - strain relations (3.3), it is possible to obtain the

stress - displacement relations by using the kinematic relatioships [ 25 1 given below:

E1° = ZU° / N/

E20 = avo /a-y

(3.14)

£30 = Vz

o = V, + awo /y etc.

Then, it can be seen that for the stresses to be linear in the spatial coordinates x and y,

the displacements and the curvature terms uo, vo , wO, Vx , Wy , Vz and * have to be quadratic

in x and y. Consequently, from the relationships (3.11) , the weighted displacement parameters

(3.10) should vary quadratically with respect to x and y.

In the present formulation, triangular elements are chosen for discretization purposes. It

has been established [38,39] that it is convenient to work with area coordinates or natural coordinates

when dealing with triangular elements. If 1, 2 and 3 are the area coordinates, then the
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relationships between these and the cartesian coordinates are given by ( figure 2.) the following set

of equations. The last of the following expressions is an identity associated with the area

coordinates. This identity is used to obtain a unique relationship between the two sets of

coordinates:

x = xI I + x2 2  +x 3 3

Y - Yi I + Y2C2 + Y3 3 (3.15a)

1= + k + C

Following the above equations, it should be noted that the edge 1-3 of the triangle is

defined by only two area coordinates CI and C2, while the third area coordinate C3 = 0.

Similarly, the boundary 3-5 has j = 0 and on boundary 5-1 , the coordinate C2 = 0. Also,

the numerical integration of functions on the rectangular boundary 1-3 is carried with respect to C,

and C2 only. Similar reasoning follows for the other two rectangular boundaries and the integration

is carried out with respect to all the three coordinates for the upper and lower triangular boundaries

of the element.

By inversion of equations (3.15a), one can get

Cl Y23 x32  x2 Y3 - x3 Y2 x

k = 1/2A Y3 1  x13  x3 Y1 - x Y3  y (3.15b)

{3 L Y1 2  x21  xl Y2 - x2 Y 1)

In the above equations, xi, yj (i = 1,2,3) are the cartesian coordinates of the node i

and

Y23  Y2 -Y3

x32 fix 3 -x 2

x2= x2 - x, etc. and
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2A = (x 1 - x3)(y 2 - Y3) " (x 2 - x3 )(Y 1 - Y3)

For the purpose of establishing rules for differentiation and integration, only C and C2

are considered as independent variables. Thus a /' implies that C2 is held constant and a /Da2

implies that C1 is held constant. The differentiation rule is given by

= [J] (3.16a)

A 2  Mly

where [J is the Jacobian matrix. Its determinant is equal to 2A. In other words

[J] x13  Y13 1
L x2 3  Y23  (3.16b)

Thus the differential area dx dy is replaced in all integrations by

dxdy = IJI d~l dC2  (3.16c)

where I J I symbolizes the determinant of the Jacobian Matrix [ J].

In the final analysis, it is necessary to maintain continuity of displacements u , v and w

between the layers of the laminate. For this purpose, we choose as the nodal degrees of freedom the

displacements at the top and the bottom of the layer. Denoting by the subscripts t and b the top

and the bottom displacements respectively (such as ut and ub etc.), it is possible to use the

relationships such as, for example,

u = 1/2 i + 3z/H u*
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and write

ut = 1/2 U +3/2u*

Ub= 1/2 -3/2u*

vt 1/2 V - 3/2 v* (3.17a)

vb= 1/2V - 3/2v*

wt = -3/4 C +3/2 w* + 15/4 W

wb = -3/4 v - 3/2 w* +15/4 W

Another relationship for w is added so that the seven unknown displacements aro related

to the seven weighted displacement parameters. This last relationship refers tG the middle surface

displacement wo . That is,

wo = 9/8 ,-15/8 W*v (3. i7b)

The displacements ut, ub, vt, vb, wt, wb, wo are graphically shown for different

nodes of a layer in Figure 2.

In the matrix form, the equations (3.17) can be written as

(Utb) = [LufI (u) (3.18)

where ( Utb = Ut, ub, vt, vb' wt, wb, wo )T and the elements of the matrix F Lu5] are

given by
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1/2 0 3/2 0 0 0 0

0 1/2 0 3/2 0 0 0

1/2 0 -3/2 0 0 0 0

[Luar] - 0 1/2 0 -3/2 0 0 0

0 0 0 0 -3/4 3/2 15/4

0 0 0 0 -3/4 -3/2 15/4

0 0 0 0 9/8 0 -15/8

The inverse relationships of (3.18) can be written as

( u ) = [ l-1 ( Utb) (3.19)

As per earlier discussion, the interpolation representation for the displacements UOb} is

written as, for example,

Ut = utlN, + ut2 N2 + ut3 N3 + ut4 N4 + ut5 N5 + ut6 N6  (3.20)

Similar quadratic representations are written for ub, vt , vb , wt , wb , wo also. In the

above expression (3.20), Ni ( i=1,6 ) represent the shape functions and uti and Ubi etc. refer to

the corresponding quantities at the node i. The same shape functions are used to characterize all the

displacements. These shape functions are given by the following expressions [ 38 ]:

Ni = i (2 i - 1) (i=1,2,3)

N4 =4 1 C2

N5 = 4 C23

N6 =4 C1C3 (3.21)

It is now possible to use equations (3.18) through (3.21) in conjunction with equations

(3.11) to obtain the various stiffness matrix terms for the global region. As an illustration, the
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following development is given.

From(3.1la), { eO} = [Ll] [L2 ]{u}

With(3.19), C eO} I [L 1 ] [2] [L - {1 (Ut

With the set of interpolation functions (following the type given in (3.20)) given as

Iutb = [Ns](UeN }  (3.22)

in which the vector ( ueN I includes all the nodal degrees of freedom for the element. Then,

S ) = [Li][L 2 ] [LuI)-i[Ns](U e}

= [i 1 2N] ( UeN }  (3.23)

Hence the first expression on the right hand side of equation (3.8a) is written as

(I o)T[c 1 l(Eo) = ( UNT[L 1
2NI T [ EllI[L 1

2N] (UeN }  (3.24)

The corresponding stiffness matrix is

f [L12N ] [Cll] [L 12NJ dv

Vg

In the above expression, the integration with respect to z can be done independently.

The remaining terms in the integrand are now functions of x and y only. These area integrals are

numerically evaluated by using the Gauss quadrature formulas. Similar expressions as (3.24) are

written for various quantities given in equations (3.7) and (3.8) and element stiffness matrices are

individually written for each expression of these equations. In each case, the integration with

respect to z is appropriately done by considering the various powers of z appearing in (3.7).
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3.3 ELEMENT MODELING FOR THE LOCAL REGION

The functional characterizing the behavior of the entire laminate also consists of a

Reissner's functional 7CR that represents the local region of the laminate. For a local region

consisting of N layers, this functional is given as

N

= I ,k - jT u ds (3.25)

k=l Scr

where 7r k is the volume integral expression given by

I k = f [ 1/2ij ( ui j + uji) - U* ( aij, eij ]k dvk (3.26)

V1 k

Here, U* ( oij, eij ) is the complementary energy density and V, k refers to the volume enclosed

by the kth layer in the local region. The volume integral expression is written as (without the

superscript k for convenience),

I [ o (e -e) U*I dv (3.27)

V1

Writing e = (S a + e ) and the appropriate expression for U*, the equation (3.27) can

be rewritten as

I= 1/2 f T S u dv + f T e dv (3.28)

V1  V!

where S represents the compliance matrix. It should be noted that ;, e and e are vector quantities.

For the local region, the in-plane stress components are assumed to be linear functions of z and the

remaining stresses are either quadratic or cubic in z as a consequence of substitution in the layer

equilibrium equations. These stresses are functions of the interlaminar stress components Pl, P2,
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tI , t2 , sl and s2 [241. These latter terms, therefore appear as the nodal degrees of freedom for

the layer in the local region in addition to the displacement degrees of freedom as in the global

region.

As in the case of strain components for the global region, the stress components here are

split up into two vectors for mathematical convenience. These are

{Cyl )T . 1  02 03 0 6 )T and 0 2 )T= (04 0 5 )T (3.29)

By using relations (3.25) of reference 24, these vectors can be written in terms of the

force and moment components and the interlaminar stress components. These are

(al) = [Ml*]{NR) and (F 2 1 = [M2 *](V) (3.30)

where

{NR )T = (Nx/h 2  Ny/h 2  Nz/h 2  Mx/h 2  My/h 2  Mz/h 2  Mxy/h 2  P 1 2} T

(V}T = (Vx/h Vy/h s, s2 tI t2) and

1 0 0 0 12z/h 0 0 0 0 0

[M 1*] = 0 1 0 0 0 12z/h 0 0 0 0

0 0 F1  0 0 0 F2  0 F3  F4

0 0 0 1 0 0 0 12z/h 0 0

F, 0 0 0 F5  o]

In the above expressions, quantities Vx , Vy , Nz , Mz are defined in reference 24, h is

the thickness of the layer under consideration and F1 through F6 are defined as follows:
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F, = 3/2 6 z2/h 2

F2 = 30 z/h - 120 z2/h 2

F3 = -1/4 + 3 z/2h + 3z 2/h 2  - 10z 3/h 3

F4 = -1/4 - 3z/2h + 3z 2/h2 + 10z 3/h 3

F5 = -1/4 - z/h + 3z 2/h2  and

F6 = -1/4 + z/h + 3z 2/h 2

Corresponding to the stress components (3.21), the compliance matrix for the layer is

split up as follows:

S11  S12 S 13  S16

[S1 - S12  S2 2  S23 S26

S13 S23 S26 S36

S16 S26  S36 S66

[922] =FS 44  545 1
S45 S55

[s21 [S14  S24 S34 S461

S15  S25 S35  S56

Again as before,

= + 2 + 1
3 + l 4 + 75 (3.31)

where

Il 1  = 1/2 f 1 T [S l )](1 dv and
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NJ12 = 1/2 f ({ 2 }T[ 2 1 ]  01) dv and so on.

Upon substitution of expressions (3.30) for aI and ( d 2 ) into equations of type

(3.32), one gets, for example,

It 1 = 1/2 f (NR)T [ Ml* ]T[sI] [ MI*] (NR) dv

V1

It should be noted that in the above expression, the z-terms appear only in the matrix

[M1*]. As such, the above expression can be rewritten as

7c, = 1/2 f {NR)T [11*] {N R) dA (3.33)

Aj

where, now,

[911"= I [M*]T [g11] [M 1*] dz

Al

The other expressions in (3.32) can be similarly written as, for example,

I1
2 = 1/2 (V)T [$ 2 1*] (NR) dA etc. (3.34)

Aj

Thus it is possible to write each integral expression in equation (3.31) in terms of the

force and moment components as well as the interlaminar stress components.

3.4 DISCRETIZATION PROCEDURE FOR LOCAL REGION

It is now possible to invoke the layer constitutive relations to write (3.34) in terms of

the displacement functions and the interlaminar stress components. These can be symbolically

written as
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{NR) - [RI] u) + [R 3] (e (3.35a)

{V} - [R 2] { u 2 ) (3.35b)

where

(u 1} = Fa V u* v* 'V w* W, PI P2}

( U2) = {u* v* W^ S1 S,2 tl t2 I

The matrices [ R1 ] [ R2] and [R 3] express the relations of the force and moment

components with the above mentioned vectors of the weighted displacement parameters and the

interlaminar stress components. Substitution of expressions (3.35) into expressions of type (3.33)

and (3.34) results in the variational functional 7r, of (3.31) to be written as

7r = 1/2 f[ulT[R 1 1] (]U, + Ul )T [R 13] (e} +

{e)T[R 13 ]T(ul) + (e)T[R 33] (e) +

(u 2 )T[R 22] (U 2 ) + (Ul )T[R 12] {u 2 })+

{u 2 )T[R 12 1T(Ul }+ (u2 T [R23 ] (e) +

{e)T [R 23 ]T u 2 ) ] dA (3.36)

The various matrices [RIll, [R 12] etc. are defined as follows:

[RI1] = [R 1] [11*] [RI]

[R 1 2] = [R]T [ 92 1*T [R21

I R23] = [ R2]T [ $21*] [R3] and so on.

Again, as in the case of global region, it is necessary to maintain displacement and stress

continuity between any two layers of the local region. Thus, we revert to actual set of degrees of

freedom which are now the actual displacements at the top and bottom of each layer ( ut, ub etc.)

along with the interlaminar stress components.
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The relationships between the actual displacements and the weighted displacement

parameters are similar to equations (3.17) [24] and the steps for further development of element

stiffness matrices for the local region follow those for the global region. The major differences

between these two dcvelopnnts are that:

(i) in the matrix expression in equation (3.18), there are additional terms referring to the

interlaminar stress components,

(ii) while the interpolation functions for the displacements follow the same pattern of

quadratic variation, the new degrees of freedom for the local region referring to the interlaminar

stress components are linearly interpolated. That is,

Pi = p1
1 N, + p1

2 N2 + p1
3 N3

P2 P2
1 NI + P 2

2 N2 
+ P 2

3 N3

t= t1l N, + t1
2 N2 + t1

3 N3  (3.37)

t2 t2 lN 1 + t22 N2  +t2 3 N 3

s= s1lN 1 + s1
2 N2  + s13N 3

S2 = s2
1 N, + s2

2 N2 + s2
3 N3

These expressions are incorporated into the equation (3.36) and the variation of 7,

with respect to the chosen degrees of freedom generates the stiffness matrix for the element of the

local layer under consideration.

3.5 SURFACE INTEGRALS INVOLVING LOCAL AND GLOBAL REGIONS

The surface integrals to be considered in the present variational formulation for the

global-local model are

N

J UdS + J u dS + Y f (ik Uk + tk+l uk+l) dSk + J( l + tg)u dS

Sall SogI k=1 5 ot2 Sag2

(3.38)
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In the above expression, Saul and Sagi represent in general the external boundaries of

the local and global regions, respectively where the tractions are prescribed. These include the top

and bottom surfaces of the laminate (where an external loading may or may not be prescribed). In

(3.38), the additional subscript 2 represents the interlaminar surfaces between the local layers and

the common surface between the global and local regions. Since there are no prescribed tractions on

So2 and Sag2 (the continuity of stresses and displacements being taken care of by common nodal

parameters), the last two integral terms of (3.38) are zero. Any of the two remaining integrals can

be generally written as

f u dS (3.39)

Sq

where (t ) is the traction vector of boundary tractions on the boundary ScF and [ u ) is the vector

of corresponding displacement components. These displacement components can be written in terms

of the appropriate nodal degrees of freedom pertaining to the boundary under consideration. The

equation (3.39) can include a general type of loading that can be represented by the vector (1 ). The

traction components in the surface integral expression need to be specified on every boundary of the

element. By a knowledge of the state of stress at any location, the traction components on

boundary surfaces are readily obtained by the following general relatioships.

x ax 'txy xz nx

Ty CF y n y (3.40)

z 'CXz yz CYZ nz

In the above equations nx , ny, nz are the direction cosines of the normal to the boundary

surface under consideration.

In the present mathematical formulation, a uniformly distributed load is considered for

checking the validity of the present approach. In such a case of transverse loading, only the z-
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component of the traction vector is non-zero and is equal to the magnitude of the applied load (n. = 1

and n. = ny = 0). The surface integral (3.39) then becomes

q f (N)bT (u)b dS (3.41)

SO

where ( N )b refers to the vector of shape functions associated with the dispacement w and ( u lb

is the vector of the degrees of freedom pertaining to the boundary. This expression now involves

integration with respect to x and y of the boundary. As in the previous cases this integration is

written in terms of the area coordinates and the numerical integration is done by Gaussian quadrature

constants as described in the next section. This results in a consistent load vector as the right hand

side of the final equations to be solved.

3.6 NUMERICAL SOLUTION PROCEDURES

By considering the mathematical developments of discretization as in the previous

sections, a numerical solution scheme was evolved and the corresponding computer algorithm

written. This corresponds to the various stages such as evaluation of volume integrals for global

and local regions, assembly procedures at the element level and later at the structure level for the

triangular mesh pattern chosen and the appropriate inclusion of boundary conditions and finally

solution of algebraic equations. As mentioned before, the initial cases considered for the numerical

work pertain to the checking of the validity of the present model. As such, numerical problems for

which solutions are established are chosen for this purpose.

The final from of variational functional governing the behavior of the laminate can be

written as

7c = 1/2 fTKf - fTQ (3.42)

In this expression, the stiffness matrix K is obtained by assembling the corresponding
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stiffness matrices for all the elements. Thus K can be referred to as the structure stiffness matrix.

Similarly, the consistent load vector Q also corresponds to the structure. f in the above

expression is the vector of the nodal degrees of freedom for the structure. The variation of the above

functional with respect to each of the nodal degrees of freedom gives rise to a set of linear,

simultaneous equations. It is then necessary to apply the boundary conditions applicable to the

problem under consideration. This process reduces the number of simultaneous equations to be

solved finally.

The various analytical developments given in the previous sections have been

transformed into computer codes in order to solve numerical problems pertaining to laminate stress

analysis. The computer program written for this purpose covers the following topics. The

corresponding subroutines performing these operations are also given.

(1) Input element description, nodal coordinates and properties of individual layers (

thickness, fiber orientation, material constants etc.). The nodal number generation and the

corresponding coordinate evaluation are done by the subroutine ELGEN after the dimensions of the

plate and the mesh/grid patterns are read.

(2) Calculation of global modulii for the layers comprising of the global region. This is

achieved by the subroutine GLOBQ, the output of which are the quantities of the layer moduli

integrated appropriately through the thicknesses of the layers.

(3) Calculation of shape function parameters and Jacobian of transformation which are

applicable to both global and local regions.

(4) Evaluation of the various stiffness matrix elements for global region using the global

moduli. This is done in a subroutine VOGLOB which essentially converts volume integral terms to

area integral terms. The numerical integration is effected by the 5-point Gauss-Radau formula for

which the constants are read as input in the beginning.
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(5) Assembly of the matrix elements at the element level for the global region using

subroutine ELSTG.

(6) Evaluation of compliance elements for a local layer based on the individual layer

properties for that layer. This evaluation is done in the main program. Calculation of stiffness

matrix elements for a local layer following the analytical descriptions is also done here.

(7) Assembly of stiffness matrix elements at the element level for the local layer under

consideration (subroutine ELSTL).

(8) Repetition of the calculations for all the local layers so that the stiffness matrix

for the element now includes all the local layers as well as the global region. Repetition of

calculations of the above steps to cover all the elements of the structure.

(9) Calculation of the consistent load vector corresponding to the element under

consideration (subroutine LOAD).

(10) Assembly of element stiffness matrix and load vector elements to obtain the

corresponding structure stiffness matrix and load vector using the subrouitne ASSMB.

(11) The boundary conditions read in step (1) are now invoked (subrouitne BCOND)

and the necessary rows and columns are set to zero corresponding to zero boundary conditions.

(12) Solution of the resulting set of simultaneous equations to obtain the required nodal

degrees of freedom. This is done by means of library subrouitne LEQTIP. The results - both

stresses and displacements - are listed.

These steps are shown in the form of a flow chart in Figure 4.
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As described in the previous sections, area integrals involving cartesian coordinates are

encountered during the present discretization process. Since the area coordinates ( or the natural

coordinates ) are chosen for the numerical work, the computations are also done with the latter as the

variables. Specifically, a typical integral in cartesian coordinates is transformed to one in area

coordinates as follows.

I = f F dxdy = f f F det [J] d 1 d 2

The numerical evaluation of the above integral is carried out by means of the

Gauss-Radau integration constants involving 5 points [38]. In other words, the integral is

numerically written as

5 5

I= I W F(.I , C2, C3) det[J]
i=1 j=1

where

C, = AI (i)

C2 = AJ()[I-AI(i)]

C3 = 1- CI - C2 and

W = AS(i) H(j) [l-AI(i)]

The five sets of values ( corresponding to the five point integration formula) for the

constants Al (i), AJ Ci) etc. are chosen from reference 38.

For the purpose of numerical computations for obtaining the stiffness matrix elements

from the present approach, a laminate as shown in Figure 5 is considered. Figure 5a shows an

element arrangement for a quarter plate with an assumed symmetry about the x and y coordinate

axes. Figure 5b shows a set of more refined finite element mesh patterns to be used later on in the

investigation. This is a typical mesh pattern associated with triangular finite elements. A scheme

of nodal numbering is also shown in these figures to obtain an economical storage capacity in the
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computer. These numbers refer to the nodes which have all the layers incorporated in them and thus

the stiffness matrix for any element here would have already incorporated the stiffness matrix

contributions from all the layers of the laminate.

3.7 RESULTS AND DISCUSSION

To start with, consideration is given to laminates with isotropic layer properties. This is

intended to check the validity of the present approach by comparison with known results. In all the

following calculations one global layer and one local layer are considered. From the mathematical

developments described before, this gives an element 84 degrees of freedom (the element containing

both the local and global region as shown in figure 3). The material properties chosen are: E = 30 x

106 psi and G = 11.54 x 106 psi. The geometry chosen is represented by a = 1" and total

thickness = 0.01".

First, a square plate is chosen with only two elements in the quarter plate as shown in

figure-4. This is done primarily to check the various stages of calculations in the procedure such as

symmetry of stiffness matrix, appropriate assembly technique etc. At the element level, an

eigenvalue check is done for the stiffness matrix which, in mathematical terms, is given by the

equation

K-=O

where K is the element stiffness matrix, I is identity matrix, and X's are the eigenvalues. The fs

(see equation 3.42) associated with X's are the corresponding eigenvectors. The above solution

must have at least six zero eigenvalues corresponding to the six rigid body modes for the structure.

It was found that for one element in the grid shown in figure 5a, there were six eigenvalues very

close to zero compared to the rest of the eigenvalues. It was also found that the diagonal elements of

the stiffness matrix were nonzero, positive and relatively dominant. A check was also done on the

assembly procedure for the two elements shown in figure 5a. Since the plate is chosen to be square,

geometric symmetry tests were also applied. For example, the stiffness associated with displacement
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u at node 2 is identical with that associated with displacement v at node 4. The stiffnesses associated

with w at nodes 2 and 4 were found to be identical. Similar checks were applied for symmetric

nodes such as 3 and 7 and 6 and 8.

The next stage of calculation involved the actual solution to the problem of a plate

transversely loaded by a uniformly distributed load. The boundary conditions were chosen to be

simply supported on the edges x = a and y = a. This implies that at the bottom of the laminate w is

set to zero at nodes 7, 8, 9, 6 and 3. Also, the shear stresses rx and Tz are set to zero on the edges

x = a and y = a respectively. Because of the isotropic laminate construction and the chosen

symmetry of geometry, the following conditions were also applied.

u=0 at xf=f0, y=y

v=0 at y=0, x=x

All the above mentioned conditions were applied to the assembled stiffness matrix

representing the entire quarter plate and the resulting equations were solved by a library subroutine.

The maximum value of the vertical deflection was found to be 0.0287 q, where ql is the intensity of

the applied load. The exact value as given in standard text books is

Wmax = 0.00406 q a4 / D

where a is the side of the plate and D is the flexural rigidity. For the geometry and the material

properties chosen, this deflection is given as 0.02365 ql. This shows an error of about 21% with

the finite element result. This is expected for the grid that has been chosen.

The next two cases refer to the laminates that are rectangular in planform. For this

purpose, several grid patterns are chosen as shown in figure 6. In the first case here, a rectangular

laminate with b/a = 2 is chosen. For this case, the exact solution for the maximum deflection is

given as
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Wmax = 0.01013 q, a4 / D = 0.00369 q,

With the grids (a) and (b) in figure 6 (i.e., 2 and 4 elements respectively), the finite

element results for wmax were found to be 0.0046 ql and 0.00323 q, representing errors of 24.7%

and 12.4% respectively.

The next case of rectangular laminate has an aspect ratio of 4. The same grid patterns as

shown in figure 6 are chosen here. However, for studying the convergence of results, higher

number of elements in the quarter plate is chosen. These grid patterns are shown in figures 6c

through 6f in which the number of elements are respectively 6, 8, 10 and 12. The exact solution for

this case is

wmax = 0.01282 q, a4 / D = 0.000292 ql

With 4, 6, 8, 10 and 12 elements in the quarter laminate, the corresponding values for

maximum deflection were found to be 0.000345 q1 , 0.000325 qj, 0.000316 qj, 0.000300 q, and

0.000294 ql respectively. It can be seen that the results from the finite element formulation converge

very well to the exact result. In order to obtain a graphical idea about this, the percentage errors of

the finite element results are plotted against the number of elements for this specific case with aspect

ratio equal to 4. This is shown in figure 7. It can be seen that for the last case where the number of

elements is 12, the error is about 0.7%. These results establish an acceptable standard of

convergence rate for the finite element stiffness model considered in this section.
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4. GLOBAL-LOCAL FINITE ELEMENT METHOD: FRONTAL

SOLUTION TECHNIQUE

In this section a set of problems (bending, uniform tensile and stretch) have been studied

by using global-local and local models. An important aspect of this part is the use of frontal method

of finite element solution. This is done in order to reduce the size of the structure matrix so that more

plies and more refined mesh can be studied. Currently, the program can solve 3500 degrees of

freedom or more on IBM RT PC without having any memory problem. The present illustrative

study includes: (1) The analysis of bending effects in laminates under prescribed uniform transverse

load and (2) The analysis of edge effects in laminates under applied uni-axial uniform tensile stress

or strain. The basic formulation of the variational problem using the global-local approach has

already been described in the previous section. The aspects of computer programs incorporating the

frontal solution technique [42] and the consequent numerical results are delineated and discussed in

this section.

4.1 LOCAL DOMAIN (MODEL 1)

Based on the reference 24, the simplest assumption consistent with a realistic stress

analysis for the in-plane stress component are assumed to vary linearly through the thickness of each

ply. The substitution of these stress components into the differential equations of equilibrium yields

the interlaminar stress components in terms of tractions Pi, si, ti (i=1,2), stress and moment

resultants. Finally the weighted displacements are expressed in terms of stress resultants through

constitutive relations. For the sake of clarity, some of the expressions are reproduced here. The

energy functional is first written as [241

N

l= f Y ( OT e - 1/2 
OT S a -OT e ) dVk

V k=1

The simplest assumption consistent with realistic stress analysis for the in-plane stress
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component can be expressed as

Nx  12 Mxz

ax- h + h3

Ny Y 12 Mxz

Cy h + h3

Nxy 12 Nxyz

Cxy h + h3

where Nx, Ny, Nxy, Mx, My, Mxy are functions of x and y. Obviously, these functions

represent the force and moment resultants arising in plate theory. As in reference 24, we introduce

the following stress and moment resultants.

h/2

N i = J i dz

-h/2  i = 1,2,3,6

h/2

M i = J za i dz

where h is the thickness of each layer and N3 and M3 are mathematical, not physical, quantities.

We first consider a single layer of thickness h within the laminate. We let x and y represent the

coordinates in the midplane of the layer, which is bounded by the planes z=±h/2. The interlaminar

stresses ;z , aZXz rzy at the top of the layer are denoted by P2, s2, t2 respectively, while the

corresponding stresses at the bottom of the layer are designated as Pl, Sl, tl.
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In plate theory, the equations of equilibrium or balance of linear momentum, in terms of

special description within whole local region R, are in general expressed as

pai = Oijj + pb i

where aij are stress components, ai is the acceleration of deformed body, bi are body force per

unit mass, and p is the density per unit volume. By neglecting body force and considering steady

state only, we now substitute in-plane stresses along the values of the interlaminar stress at z =h/2,

into the equilibrium equations, which leads to the following distributions

Cz -- (pl + p2) (12 z2 - 1) + (p - Pl) (40z3 -(W

4 h2  4 h3  h

+ 3Nz (1- 4z2) + 15M z (2z_ 8z 3 )

2h h2  h2  h h3

Tzy 
= (s2 - s l ) Z/h + (s, + s2 ) (12z 2 - 1) +3Vy (1- 4z 2 )

4 h2  2h h2

zzx =(t2-t 1 ) Z/h + (t i +t 2 ) (12z 2 -1) + 3Vx (1 -4z 2 )

4 h2  2h h2

where the shear resultants Vx  and Vy given by

h/2

vx = J xz dz

-h /2

h /2

V = jIcy, dz
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and are functions of x and y only.

Following theroretical development in 24 and simplifing, the Reissner's energy can be expressed as

X= X1- XS

where

X1 ff ( IV2]IT[R 2]T[RS]T[RND][R 2]IV2] + [V3]T(R3]IT[RS]T

X RND]fR 2][V 2J +~ [y3]Tf. 91] + rV3jT(Rjo [Ual

- 1/2 ( [V2]T[R21[RSIT[RQIRSIIR 2I(V2 l + IV.31T 1R3 1[RSI

*[RQJT[R 211V 2] + (V3 JT[RTJ(RS][R 2]pt 2]

* [V2]T[R 2]T[RS][RS][R 3 IT[V 2] + 1V3 IT[R 3I[RSI

*[RQJT(R 2][V 3] + V2]T[RTI[RSI[R3 IV3 ]

* IV2]T[R2 TRSIT[RTT V31+CV3 ] T(R3IT[RSJT[RTI x [V21 I V3]T[RPI[V3] dx dy

and

7cs fJ u uds

where

[V3 T= IP2 s2 $2 PI 1 t1 I [V5T NN YNZ Nxy MX MYMz MXy vY VX]

1h 0 0 0 0 0 0 0 0 0
0 1/h 0 0 0 0 0 0 0 0

0 0 / 0 0 0 0 0 0 0
RND= 0 0 0 1 th 0 0 0 0 0 0

0 0 0 0 12 /h3 0 0 0 0 0

0 0 0 0 0 12/h3 0 0 0 0

0 0 0 0 0 0 12/h3 0 0 0

0 0 0 0 0 0 0 1 2 1h3 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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ha 0 0 0 0 0 0
2 Rx

0 ha 0 0 0 0 0
2ay

0 0 0 0 0 3 0

ha ha 0 0 0 0 0i 5y 2ax

o 0 0 h2 a 0 0 0

R2= 4ax

0 0 0 0 h2 a 0 0
40y

0 0 -5h 0 0 0 15h
Z4 4

0 0 0 h2 a h 2 a 0 0

0 0 3 a 0 3 0 -3
4ay - 4ay

o3 3  0 0 -3
-x h 4ax

Sll S 12 S13 S 16  0 0 0 0 0 0

S2 1  S22  S23 S2 6  0 0 0 0 0 0

S 3 1  S32 6S33  S 1 6  0 0 0 0 0 0
5

S 6 1  S62 S63 S6 6  0 0 0 0 0 0

0 0 0 0 Sll S 12  S13 S 16  0 0

RS= 0 0 0 0 S2 1  S2 2  S23 S2 6  0 0

0 0 0 0 S31 S32 UoS 3 3  S36 0 0
7

0 0 0 0 S61 S62 S63 S66 0 0

0 0 0 0 0 0 0 0 6 S44  LS4 5
5h 5h

0 0 0 0 0 0 0 0 6545 S5 5
5h 5h
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 S33 h 0 0
10 10

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

R3= j 3 3h2  0 0 $33h 2  0 0
28 28

0 0 0 0 0 0

o 1 4 4  S4 5  0 S4 4  $45
10 10 10 10

0 S4 5  55 0 4 5  S5 5
10 10 10 10

0 0 3/4 0 0 -3/2 -15/4

0 -1 -h a 0 -3 ha 3 ha
2 8 ay2 4ay 8 ay

R4 -1 0 -ha -3 0 ha 3 ha
2 8 ax 2 4 ax 8 ax

0 0 -3 0 0 -3 15
7 2 4

0 1 -ha 0 -3 -ha 2hi
2 8 ay 2 4 ay 8 ay

1 0 -ha -3 0 -ha 3ha
2 Sax 2 4a x 8 ax

0 0 1 0 0 0
0 1 0 0 0 0

RIO= 1 0 0 0 0 0
0 0 0 0 0 -1
0 0 0 0 -1 0
0 0 0 -1 0 0
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533F42  S35F4F6 S36F4F6 S33F3F4 S35F4F65 S36F4F5

S53F4F6 S55F6F6 S56F6F6 S53F3F6 S55F5F6 S56F5F6

RP = S6 3 F4F6 S65F6 F6  S66F6F6 S6 3F3F6 S6 5 F5F6  S66F5 F6

S33F3F4 S35F3F6 S33F3F6 S33F3F3 S35F3F5 S33F3F5

S53F3F5 S55F5F6 S56F5F6 S53F3F5 S55F5F5 S56F5F5

S6 3 F3 F5  S5 6F5 F6  S66FSF6 S63F3F5 S6 5 F5 F5  S66F5F5

F1= 3/2 - 6z2/h2

F2 = 3Oz/h - I20z3 /h3

F3 = -1/4 + 3/2 Z/h + 3z2/h2 - I0z3 /h3

F4 = -1/4 + 3/2 z/h + 3z2 /h2 - 10Z3/h3

F5 = -1/4 + z/h + 3z 2 h2

F6 = -1/4 + z/h+ 3z 2/h2

13 = 12 z/h3

14 = 12zh4

15 = 12zh5

From above equations, the funtional, x~, has been defined. Therefore the problem

becomes to find the stationary value of V2 and V3 e H, and H3 respectively such that

7= I - 7,+ f MV2dS1 +, f NV3 dS2
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where

HI = { V2 I V2 eHm(R3), MV 2 =q, on asI

H2 = [ V3 IV3 e Hm(R3), NV=q2, on as2 )

Hm is infinite dimensional space as1 and as2 are the boundary section in which V2 and

V3 are prescribed.

Equilibrium requires that x be stationary, i.e., 8n = 0 where it must be recognized that

V2 and V3 are independent variables. Hence, in the finite element analysis of on assemblage of

elements we only need to enforce interelement continuity on V2 and V3 , which can readily be

achieved in the same way as in the isoparametric finite element analysis of solid. Following the

standard finite element analysis we use

q r

V2 = 7 2Vi , V3 =2 7 j 3Vj

i=1 j=1

where the Oi and Xj are the interpolation functions and q and r are the number of nodes of the

element with respect to weighted displacement and interlaminar stresses. Using the fact that the total

Reissner energy must be stationary and taking account of the discretization, the final algebraic

equations can be expressed as

tK V ~ =(a]

where the K is the stiffness matrix obtained from the volume integrals of the energy equations for

the entire region. V2 and V3 are the discretizing weighted displacements, normal and shear stress

at the top and bottom of layers. F is load vector obtained from the area integral of the external

tractions of whole boundary. Ua is displacement equivalent vector derived from the interlayer
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continuity.

4.2 GLOBAL-LOCAL MODEL (MODEL 2)

The global-local model was formulated in order to solve the actual displacement and

interlaminar stresses at the same time. The energy equation for the global regions and local layer can

be expressed as

S = JWdV + f[ 1/2ij (Uij + Uji) -W]dV - fTi Ui ds

V S

where W = W (Ui, cij), W = W ( cij) and W and W are strain energy density functions, the first

in terms of displacements Uj and eij, the expansional strain components, and the second in terms of

stresses aii and eij.

The energy equation can be written as

= X + RI-

where

xgffi { A qqTAq1 +q +Bq1 +qTBq 2 + qTEq 2

Ag + qTEq 3 + qTF 1 q3 + qTElql + qTF 1 q2

+ qT H q3 (VI dx dy

N

R i f I ( [u]T[D6]T[RS[ROJ[RS][D6][V ] + [U3]T[R 3]T[RS]T[RQ][D 6][V ]

Al  k=1 + [VlT[D 6][RSjT[RQ[RS [R 31[U 3] + [U 3][R 31[RSJRQ][RS]fR 3] ['13]

+ [U 3 ]T[RT][RS][R 31[V 3 ] +I [V3]T[R 3jTLRSIT RTJiU 3I

+ [UIT[D 6]T[RS]T[RT[V31 + [V3][RT][RS][D 6][U]

+ [U3]T[RP][V3] )k dxdy

NS f fg u d Sg + f flu d S1

SS S1
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where the A. and A, represent the area of the global and local region in the x-y plane respectively.

The S. and S, indicate the external boundaries of the global and local regions respectively. The f.

and f, stand for the external forces acting at the global and local regions and

q, = D, D 4 D5
1

q2 = D2 D4 D5-'

q3 = D3 D4 D5-1

D 6 = R 2 D5 -1

a o o o o o 0

7x

0 a 0 0 0 0 0

Di= a a 0 0 0 0 0

o a a 0 0 0 0
7 y

0 0 a 1 0 0ax

0 o 0 a 0 0 0
ax

0 0 0 a a 0 0

ay

0 0 0 0 0 0 1

D2= 0 0 0 a a 0 0
ay ax

0 0 0 0 0 a 0

ay

0 0 0 0 0 a 0

ax
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h/2

(A.B.E) = J (1, z. z2 )C dz
-h/2

h/2

(El F1 ) = J (.5) ( 2 , z3 ) C3 dz
-h/2

h/2

Hi f (.5)(z 4)M22 dz
-h/2

and [R21. [R3 1, [RS], [RQJ. [RP], and [RT] are defined as local model in the previous section.

From above equations, the functional x of x , ; and ;, are defined. Therefore the

problem becomes to find the stationary value of U, U3 e H, and H2 respectively such that

-- 9 + N + f" + f NV3 dS2

as 1  as 2

where

H1  { V IV Hm (R3), MV = q on as, }

H2 - { V3 1V3 E Hm (R3), MV3 =q2 on aS2 }

Hm is infinite dimensional space, as1 and as2 are the boundary section in which U and

U3 are prescribed.

Equilibrium requires the xr is stationary, i.e. an = 0 where it must be recognized that U

and U3 are independent variables. Hence in the finite element analysis of an assemblage of elements

we only need to enforce interelement continuity on U and U3, which can readily be achieved in the

same way as in isoparametric finite element analysis of solid. Following by standard finite element

analysis we choose
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q r

U = u i ,U U3 = E Xj 3Uj

i=l j=l

where the Ci and Xj are the interpolation functions, and q and r are the number nodes of the

element with respect to weighted displacement and interlaminar stresses.

Using the fact that the total energy must be stationary and taking account of the

discretization, the final algebraic equation can be expressed as

[K] [F]

U3J

where the K is the stiffness matrix obtained from the volume integrals of the energy equations for

the entire region. U, U3 are the discretizing actual displacements, normal and shear stress at the top

and bottom of layers. F is load vector obtained from the area integral of the external forces of whole

boundary.

The computer code "GLFEM", based on the mixed variational finite element formulation

with frontal solver have been successfully developed. A transverse loading (bending) of simple

supported case have been studied to test the numerical solution and convergence. Also a

unidirectional tension load applied at the edge of the plate have been studied. The flow chart of the

program is given in Appendix A, and in a brief description of the program, "GLFEM", is as follows:

i) Data files have been opened by the Index of NFIA, NFIB, NFDA, NFOB, NFOC,

NFOD and MY, the first two Index are input files and others are output files. If number

of variable is more thatn 3,000, then other output file is recommended to open. All
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the data files are open at beginning of main program and close at end of main program,

for more detail see appendix A.

ii) All the basic data is input or generated in the INPUT subroutine. The data include

number of total element, node coordinates, node numbers, element connectivity, control

index, material properties for each layer, integrating data, boundary condition data and

control data of pre-frontal part.

iii) The element data based on two dimension model can be directly read from data files

generated from pre-processor program. By using convert subroutine those data are

converted into 3 dimensional data, The basic FRONTAL routine data are generated in

INPUT subroutine.

iv) The smeared (or effective moduli) for both global and local region are calculated by

GLOBAQ and LOCAQ subroutine respectively. The pre-data of global and local

regions are obtained by SMAT, USBAR and ALLOT subroutine.

v) The shape functions and their derivatives for both linear and quadratic functions in

triangular and rectangular elements are set up in SFR2, SHAPW, SHAPQ2 and

SHAPL subroutine. The matrices of the transformation are evaluated in JACOB2

subroutine. The Gauss-Radau data is input in GAUSPT subroutine.

vi) The stiffness matrix of global region is calculated in ESTIFPS subroutine. The

stiffness matrix of local region is evaluated from DBLOCA subroutine. The predata

values are calculated by PREPBM, DISWET subroutine, the inverse of the matrix is

executed by SOLVE subroutine.

vii) The load vector can be composed by concentrated and body forces, edge distriution
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forces and distributed bending forces, which are coded by LOADPS, BODY,

EDGEF and LOADPB subroutine respectively.

viii) The assembly of the stiffness matrix and elimination of the variables for the global

and local domains are done by FRONTAL subroutine. The standard frontal

procedure are followed (for more detail, see reference 42).

4.3 EXAMPLE PROBLEMS AND NUMERICAL RESULTS

The theoretical formulation is made for the analysis of composite structures with any

geometric shape and size. Three cases of boundary value problems have been investigated. Case a

deals with the bending of isotropic thick and thin rectangular plates with simply supported edges due

to a uniformly distributed transverse load. Case b deals with the stress analysis of composite

laminate under the influence of an applied in-plane unidirectional stress at the edges (x=constant) of

the laminate. Case c deals with the stress analysis of a composite laminate under the influence of an

applied in-plane strain at x=constant. The results are presented in graphical form. A comparison is

made with existing results and show a good agreement.

Case a: Bending case

For tesing the computer program written for the model 2, the solution to the problem of a

plate transversely loaded by a uniformly distributed load with simply supported edges was obtained.

The laminate geometry is shown in figure 8. Because of the isotropic laminate construction and the

chosen symmetric geometry (see figure 6a), the following conditions were applied:

u = 0 at x = 0 v = 0 at y = 0

The boundary conditions were chosen to be simply supported on the edges where x = a, y = b.

This implies that at the edge of the laminate the transverse deflection W is set to zero for all nodes.

Also, the shear stress components rzy, and rzy are set to zero on edge x = a and y = b
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respecti',ely. All the above mentioned conditions were applied to the assembled stiffness matrix

representing the actual structure plate. The above solution of square plate as given in standard text

books is

Wmax = 0.00406 q a4 D

where q is the intensity of the applied loads, a is the side of the plate and D is the flexural

rigidity. Material properties in the plane of elastic symmetry of each layer are given by

EL=.ET = Ez = 30x 106psi, GLT = GtZ = GTZ = 1.154x 106psi

VLT = vLz = VTz = 0.3,

where L, T and Z refer to fiber, transverse, and thickness directions respectively. The exact

maximum deflection for square plate is given as 0.02365 q and 0.002956 q for plate thicknesses

equal to .01 and .02 inch, respectively. The exact maximum deflection for rectangular plate with a/b

= 2 is given as 0.00369 q and 0.000461 q for the plate thicknesses equal to 0.01 and 0.02 inch

respectively.

The triangular elements and nodes are shown in figure 3. Figure 5 shows the grid

patterns used in the model (for a square plan). With grid patterns 1,2, 3 and 4 in the quarter laminate,

the corresponding values for maximum deflection listed in these tables. It can be seen that the

results from the global local finite element model converge very well to the exact value. In order to

obtain a graphical idea about this aspect, the displacement parameter W calculated by the finite

element method and given in Tables 4.1 and 4.2 are plotted in figures 9 and 10 against the number

of grids of the square and rectangular plates for both plate thicknesses.
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la Thickness - .01 INCH

grid number W FEM RESULTS EXACT SOLUTION

1 .0185 q .02365 q

2 .0189 q
3 .0196 q

4 .0206 q

lb. Thickness - .02 INCH
grid number W FEM RESULTS EXACT SOLUTION

1 .00232 q .002956 q

2 .00240 q

3 .00258 q

4 .00274 q

Table 4.1 Rectangular Plate Solution

2a Thickness = .01 INCH

grid number W FEM RESULTS EXACT SOLUTION

1 .00297 q .00369 q

2 .00306 q

3 .00324 q

4 .00342 q

2b. Thickness - .02 INCH

grid number W FEM RESULTS EXACT SOLUTION

1 .000373 q .0004609 q

2 .000396 q

3 .000427 q

4 .000444 q

Table 4.2 Square Plate Solution
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By comparing the figures 9 and 10 in numerical sense, the error percentage change from

7.4% to 3.6% as the total plate thickness changes from .01 inch to .02 inch for the rectangular plate

using grid 4. Similarly for square plate, the error percentage changes from 12.6% to 7.26%. The

results in figures 9 and 10 show that the converging speed and error percentage of rectangular plate

are better than those of square plate.

Case b: Aoplied Tensile Stress

This section shows the solution for the problem of a finite plate subjected to an in-plane

tensile load Yx = 1 at the edge, x = a by using models 1 and 2. The laminate geometry is shown in

figure 8. Two cases of geometric configurations, the ratio of a/b, are studied using the first and

second model. Also, the solutions for the thin and thick finite plate are compared. A [0/90 s

symmetric laminate with the stacking of layers as 00, 900, 900, 00 will be examined in this study.

Comprehensive results based on the reference 24 will be employed to compare specific results given

by the present theory. The layers are of equal thickness h, the laminate width is 2b = 80h or 2b =

16h and material properties in the plane of elastic symmetry of each layer are given by

Ell =20x 106 psi; E2 2 = E3 3 = 2.1 x 106 psi

G 12=G 13 =G 2 3 =.85x 106 psi 112 = J13 = 123 = .21

where 1,2 and 3 refer to the fiber, transverse, and thickness directions respectively, and ' 12 for

example, is the Poisson ratio measuring strain in the transverse direction due to uniaxial tension in

the fiber direction.

Because of the chosen symmetry of geometry in Figure 5a, the following conditions were

applied

For model 1: f, u* = 0 at x=0 , v* =o at y=0

For model 2: ut, ub =0 at x=0 vt, vb =o at y=0
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where parameters in model I are weighted displacements in x and y direction and are defined in

references 24, 25 and the superscripts t and b denote the respective variable at top and bottom of the

layer, respectively. For applied in-plane tensile load case, the boundary conditions of the finite plate

for both formulations are as follows:

The shear stress components zx and zy are set to zero at x = a and y = b respectively.

At mid-surface, the transverse deflection W and shear stress components rzy and tzx are set to zero

everywhere. All the above mentioned conditions were applied to the assembled stiffness matrix

representing the actual structure plate.

The triangular elements and nodes are shown in Fig. 3 and different grid patterns are

shown in figure 5b. Figures 11 to 16 show the convergence study of both interlaminar stress

components and weighted displacement for thick plates of aspect ratio a/b=5. The applied load is

constant in-plane tensile stress at the edge of x=constant. The results obtained from model 1 have the

same trend compared with reference 24, but magnitudes are slightly different. That is because the

applied boundary condition in the present formulation is a x = I at x = a while in reference 24 is

ex= e. The results of the stresses from the model 2 are almost equal to zero at free edge even though

the actual displacements are reasonable. Figure 17 shows the comparing interlaminar stress of

different geometric parameter for applied tensile load.

Case c: Uniform Applied Strain

In this section the response of the laminate under the influence of the unidirectional

constant strain applied at the edge of the plate has been studied. This case is simulated by applying

the equivalent biaxial stress obtained by lamination theory. The convergence study of both

interlaminar stress and weighted disp!acement of the thin and thick plate is similar to the one with

uniform tensile load applied at the edge. Figures 18 to 22 show the convergence pattern of

interlaminar stresses and weighted displacement for thick/thin plate of aspect ratio a/b=5. The

results of interlaminar stresses obtained from model 1 for constant stain case, have the same trend
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but different magnitude as reference 24. Figures 23 to 25 show the comparison of interlaminar

stress distribution between the existing and present results. The differences in magnitude between

the current model and those of reference 24 may be explained by the following points:

1. The present is 3D model and solution is obtained for finite length plate.

2. The meshes are not fine enough near the edge and/or more sublayers should be used

in order to get better accuracy in results.

Figures 23 to 25 also show the comparison of interlaminar stress of thick (h=.25 in.) and thin

(h=.05 in.) plate for both strain load with respect to aspect ratio a/b=5.

4.4 SUMMARY AND CONCLUDING REMARKS

The convergence of current model is good as shown in the pictures. The results of

interlaminar stress components and weighted displacement for both constant tensile and strain load

from the Model 1 have the same trend but different magnitude compared with those of reference 24.

The differences in magnitude between the current model and existing results may be explained as

follows:

1. The present is 3D model and solution is obtained for finite length plate.

2. The meshes are not fine enough near the edge or more sublayers should be used

in order to get accurate results especially for the thin plate.

3. Applied boundary conditions are different.

4. Geometric parameters are different.

The results of interlaminar stresses obtained from Model 2 are almost zero, even though the
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displacement trend makes sense. The reason may be explained as follows:

1. The meshes are not fine enough near the edge. For more accurate results, more

refined mesh and/or more sub-layers should be used.

2. The transformation used to convert the weighted displacements into actual

displacements may introduce additional applied loads, even though the displacement

makes sense.

3. The global region may be needed to include the interlaminar stresses as well as

displacements.

For the thin plate, the results in figures 23 to 25 show that the shear stresses are more

significant than the normal stress as compared to thick plate solution. It should be pointed out that

because the mesh near the edge is not very fine, the models do not give prominent peak stresses in

the presented thin plates solutions. This is because of the limited current hard disk space. A more

refined mesh will be studied in future investigations. Convergence study, as shown in pictures,

indicates that the results for constant strain applied load case are more stable than those for the

contant tensile load case. The results by using the constant tensile load show slight oscillation.

These oscillations reduce very significantly as the element number increases near the edge. The

aspect ratio (a/b) may also have effect on the oscillation for the tensile load case.

The current code uses frontal solver and helps reduce memory space requirements. For

example the program can handle 3500 degrees of freedom on IBM RT PC only using about 400

maximum frontal size, but the execution time is increased. The benefit of using frontal solution will

increase with the solution of laminates with large number of layers. The future studies include,

modification of the computational procedure and the application of this model for investigating

laminates with flaws and through the thickness holes. Also the curing stress study will be included.
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S. STIFFNESS AND STRENGTH DETERMINATION OF MULTI-

ORIENTED, COATED FIBER COMPOSITES

In this part of the report, a coated continuous fiber composite has been analyzed using a

three-phase concentric cylinder model. Effective thermoelastic properties have been determined and

the solution for the stress distribution derived under a uniform three dimensional mechanical and/or

hygrothermal loading. First, the theoretical model is described and the numerical results are

compared with some of the closed form solutions already available in the literature. Next, details of

the computer program, called NDSANDS, which was developed to implement the numerical

alogorithm, are discussed. Finally,some numerical results are presented for the effective

thermoelastic moduli and the micro stress distribution under a uniform temperature change for a

three-dimensional coated fibrous composite.

5.1 THE COMPOSITE MODEL

A coated, continuous fiber reinforced composite is modeled by a representative volume

element composed of N concentric, circular cylinder elements, in which the innermost cylinder is the

fiber, the next ring is the coating and the outer ring is the matrix as shown in figure 26. Let us further

denote the composite volume in between the elements as the interstitial matrix region. Both the matrix

in the composite cylinder as well as in the interstitial region, in turn, could be reinforced by particles.

0) (J)
Each element orientation, j, is defined via the two cylindrical angles QI and 0

with respect to a fixed x1 - x2 - x3 coordinate system. The local element cartesian coordinate

system is represented by X, - X2 - X3 . It should be further noted that the local fiber axis, X1 ,

coincides with the z - coordinate in the local cylindrical system, whereas, X2 - X3 is the

transverse r - 0 plane.

(J) 0)

If we denote Qa = cos( Xk, x), then from geometry in figure 26, we have
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() (W ) (J ()
os Q sin 0 cos* sinfQ sine

() (J) ) (j) () (J)
Qk= - sin Q cos Q cos cos 0 sin€ (5.1)

() (i)
0 - sin cos €

5.2 MODEL ASSUMPTIONS AND METHOD OF ANALYSIS

The general definition of the effective elastic moduli of heterogeneous materials has been

discussed in [43] and [44]. For the purpose of self-consistency, a short discussion, specific to the

problem here treated, will now be given.

In fiber-reinforced materials, the ratio of length to fiber diameter is usually very large.

Accordingly, fiber end conditions will only be considered here in the Saint Venant sense. The fiber,

coating and the matrix are assumed to be linearly elastic, homogeneous and perfectly bonded. In

general, the constituent materials may have transversely isotropic elastic and thermal expansion

coefficients.

Let the composite material volume be subjected to a set of boundary conditions of the

form

0 0
ui(s) = eij xj or Ti (s) = rij nj (5.2a,5.2b)

where ni is the unit outward normal vector on the boundary surface S, xj are the cartesian

0 0
coordinates of that surface and ej and aij are constants.

For (5.2) prescribed, it can be shown that

- 0 - 0
j= eij = const. or oij = oj = const. (5.3a,5.3b)

66



respectively, where an overbar denotes the average value over the whole volume. When

0
displacements are prescribed, the average strains are eij and 1ij have to be found and for

0 -
prescribed traction, the average stresses are 1ij and eij need to be determined.

The specimen is further assumed to be macroscopically homogeneous, by which is meant

that for (5.2) prescribed, strain and stress averages taken over large enough subregions of the

specimen are the same for any such subregion. Such a subregion will be referred to as a

representative volume element (RVE).

To facilitate the analysis we next introduce an equivalent homogeneous medium (figure

27), having the effective composite properties, as a comparison material and assume that

the
ci)

displacements or traction acting on the boundary of each composite cylinder element, S, can be

approximated by those on the comparison material, i.e.,

0J) 0 0J) 0) J) 0 0) UJ)

ui = eik xk on Sc or Ti = aik nk on Sc (5.4a,5.4b)

according to whether (5.2a) or (5.2b) is prescribed and no summation on the superscripts is

implied. Further, equation (5.4b) applies on the radial boundary of the composite cylinder

elements while on the ends the following resultants need to be specified:

2 x r3  2 x r 3

Fz ={ J rdrd O T f rer2 drdO

0 0 0 0

(5.5)
2, r 3

M2 { J zz r2 sin 0 dr dO M3 = fzz r 2 cos 0 dr dO

0 0 0 0
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where Fz is the axial force, T the torque, and M 2 and M 3 the resultant moment about the X2 and X3

axis, respectively. The resultant forces in the X2 and X3 directions, F2 and F3 respectively, are

non-zero but are not independent boundary conditions. Thus, under boundary conditions leading to a

constant strain or stress field within a homogeneous body, the stress and the displacement inside the

composite cylinder element, can now be evaluated as described in the following section.

5.3 DETERMINATION OF STRESS AND DISPLACEMENT FIELDS

If the composite volume is now subjected to boundary conditions given by (5.2a) or

(5.2b), then, within each of the N elements, we have three displacement fields (in materials (1), (2)

and (3) or fiber, coating and matrix, respectively ). The form of the governing field equations and

boundary conditions lead to a general solution of the type.

(jp) 2 (j.p) cosno
Ui  Fin(r, z) sin nO (5.6)

n 0

where j = 1, 2, ............ N; p 1, 2 ,3.

Using the strain displacement equations and the stress-strain relations for a transversely

isotropic constituent, the stress field is expressed as

0. p) 2 (j !) rcos no
( i - Hin(r, z) ( sin no (5.7)

(J, P) (j, P)

where the general form of the functions Fin(r, z) and Hin(r, z) in equations (5.6) and

(5.7), respectively, are given in Ref [45] and the specific constants are to be evaluated by the

following boundary / interface conditions:

i) Displacements (eq 5.4a) or traction (eq 5.4b) and end resultants (eqs 5.5) are prescribed

according to (5.2a) or (5.2b), respectively, at the boundary of the composite cylinder

assemblage ; Equilibrium of the entire body, however, imposes certain implied
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connections among the traction components [46];

ii) Traction and displacements must be continuous across the interfaces; and

iii) Stresses and displacements must be bounded at the origin, r = 0.

For convenience, the terms involving rigid body motion can be further neglected. The

expressions for the constants are available in detail in Refs [46, 47].

5.4 THE COMPOSITE RESPONSE

The composite stress, akl or strain e4d, can now be determined by volume

averaging the stress or strain field over the constituents, namely, the composite cylinder elements and

the interstitial matrix, respectively. The stress-strain relation for the composite now takes the form

Oki - Cum ( Cmn - emn) or eld - Sklmn Omn + eij, (5.8a,5.8b)

where ?2kln is the effective stiffness, Skmn is the effective compliance and e14 is the

effective expansional (non-mechanical) strain of the composite.

To evaluate the effective elastic moduli, we set the expansional strain components

identically equal to zero, i.e.,

(J, p)
ek= = 0 (for all j. p) (5.9)

With (5.9), the stress-strain relation for the composite, eqs. (5.8), therefore reduce to

(using contracted notation)

k " CkI E or k - S k I O (k, I = 1.2.... 6) (5.1Oa,5.Ob)
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By setting each strain (or stress ) component equal to one individually, while all

others are zero, we will respectively obtain the Ith column of the C1kl (or Ski ) matrix.

The composite engineering constants can now be defined in terms of the elastic stiffnesses (or

compliances). Finally, the effective expansional strains can be determined by subsituting in eqs.

(5.8).

5.5 INITIAL FAILURE CRITERION

The problem of the analysis of failure of composite materials is by an order of magnitude

more difficult than the problem of physical property prediction which has been discussed until now.

When a composite specimen is subjected to increasing load and/or temperature, microfailure will

develop at some stage. These may be in the form of matrix cracks, fiber ruptures, interface

separation and local plastification. As loading continues, they will multiply and ultimately merge to

produce catastrophic failure.

The criteria for strength or failure are often expressed in terms of stresses, but such

criteria do not necessarily refer only to a state of complete rupture of the materials. Failure criteria

may, in fact, refer to the initial events, as evidenced in yielding, that are the precursors of ultimate

failure.

One such simple criteria, which is widely used to predict the initial or first failure of

composite materials, is the so called maximum stress criteria. This criteria is applied by calculating

the strength/stress ratio for each stress component. The sign of the normal stress determines if

tensile or compressive strength should be used (primed quantities mean compressive). The lowest

strength ratio among the following three equations determines the ratio that controls the failure of the

composite.

R= X if GX> 0 , or RX'- X' if ax<0 (5.11)
0 X I Ix contd.
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Ry fi if a, >0, or Ry' = Y' if aY<0 (5.11)

I y

where X = Longitudinal tensile strength

X= Longitudinal compressive strength

Y = Transverse tensile strength

Y' = Transverse compressive strength

S = Longitudinal shear strength

When the applied stress component is unity, the resulting strength ratio is the strength.

Most of the other failure theories of isotropic materials are applied on the principal

stresses (0 1, a 2 and a3 ) within the structure. The state of stress at a point is first transformed (via

Mohr's circle for instance) to obtain the principal stresses.

For ductile materials, Tresca proposed the following yield criteria

max { 0.5 1 a I - Y2 1,0.5 1 Y2 - 0 3 1,0.5 103 - Ol ) = Ty (5.12)

where tY is the yield limit in simple shear, which is, for ductile materials, set equal to the shearing

stress at yield in simple tension or compression.

According to the maximum normal stress theory, a brittle material fails when any of the

principal stresses reaches the ultimate value, i.e.,

max(lal, I02 I, 1031 } = o u  (5.13)
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The maximum stress criteria is often used because of its simplicity, but it has

significance for one-dimensional state, and its use in multidimensional stress state must be made with

caution. Again we should avoid extending the simplistic failure modes based on maximum stress

components to fiber, matrix and interfacial failure modes because the micromechanics of failure is

highly coupled and does not reduce to clearly defined modes of two or three types.

5.6 VERIFICATION OF THE THEORETICAL MODEL

To place the present theory in proper perspective and to test the validity of the analysis,

we numerically simulated some trial cases and made comparisons with some of the already published

exact solutions. The reported results are based upon displacement boundary formulation since this

has traditionally led to better agreement with experimental measurements of composite moduli.

a. Effective Moduli

Expressions and bounds for the five effective elastic moduli of a unidirectional fiber

composite, consisting of transversely isotropic fibers and matrix, had been derived by Hashin [481

on the basis of analogies between isotropic and transversely isotropic elasticity equations. Using the

properties of a graphite/epoxy system, the bounds, along with the calculated results, at various fiber

volume fraction, c, are listed in Table 5.1 below. (values within paranthesis indicate lower and

upper bound respectively)
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Table 5.1: Comparison of elastic moduli

(Hashin's results and present analysis)

c EA X 103 MPa VA GA x 103 MPa K x 103 MPa GT x 103 MPa

58.116 .32407 1.3804 4.5697 1.4931

0.16 (58.116, (.3217, (1.3804, (4.5684, (1.4766,

58.131) .32407) 1.3855) 4.5972) 1.5141)

88.8597 .3098 1.4404 4.7619 1.6407

0.25 (88.8597, (.3067, (1.4404, (4.7530, (1.6045,

88.8807) .3098) 1.4478) 4.7955) 1.6622)

126.433 .2927 1.5175 5.008 1.8465

0.36 (126.433, (.2891, (1.5175, (4.995, (1.7817,

126.458) .2927) 1.5271) 5.051) 1.8622)

Four out of the five effective elastic constants, namely, EA , VA , GA and K coincide with the

bounds, whereas, the fifth, which is the transverse shear modulus, G T , lies in between.

b. Stress Field Around a Fibrous Inclusion

Edwards [49] has obtained exact closed solutions for the distribution of stress around a

spheroidal inclusion in an elastic body, which is in a uniform state of stress infinitely far from the

inclusion. For the special case of uniaxial tension applied perpendicular to the major axis of the

inclusion, as shown in Fig. 28 below, the normal stress component, OX , has been evaluated at the
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two equatorial points, B and C, as a function of the parameter H.

By definition,

H- G- 1
G

where

G'= shear modulus of the inclusion

G = shear modulus of the matrix

e.g. H= -1, a cavity

H = 0, single homogeneous medium

H -> -, rigid inclusion

Table 5.2: Comparison of stress components at the equator

(Edward's solution and present analysis)

H a x at B Ox at B GX at C Y. at C

(calculated) (exact result) (calculated) (exact result)

- 1.0 3.15E- 06 2.9999 3.0

-0.5 0.7573 0.743 1.5058 1.5

0. 1.0 1.0 1.0 1.0

10.0 1.4158 1.4 0.1034 0.089

00 1.4770 1.471 -.0317 -.035

c. Stress Field Around a Coated. Continuous Fiber

The stress field in a coated continuous fiber composite subjected to thermo-mechanical
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loading has been calculated by Mikata and Taya [35] by use of four concentric circular cylinder

model. The target material was Ni- or SiC- coated graphite fiber/6061 aluminium composite.

From the material properties used, it is noted that the matrix and the coating are isotropic, but

graphite fiber is transversely isotropic. The geometrical model used in their analysis is illustrated in

Figure 29.

d. Uniaxial Tension

For a uniaxial applied stress, aGzI the maximum stresses which occur at point A, within

the coating, have been evaluated by changing two parameters; Vf , the volume fraction of fiber, and

c/d, which is the ratio of coating thickness to fiber diameter. Their results along with our theoretical

predictions are listed in table 5.3.

Table 5.3: Comparison of z/G0o at point A within the coating

(Mikata and Taya's results and present analysis)

Ni coating SiC coating

Vf c/d

M &T Our's M &T Our's

0.25 1/70 1.880 1.872 4.18 4.141

5/70 1.750 1.739 3.41 3.403

0.36 3/70 1.550 1.537 3.14 3.122

5170 1.480 1.468 2.80 2.784

0.49 370 1.320 1.308 2.64 2.610

5170 1.260 1.241 2.31 2.300
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e. Uniform temperature change (AT > 0)

As a special case of the formulation, Mikata and Taya obtained an explicit closed form

solution for a single inhomogeneity problem (i.e. a continuous fiber embedded in an infinite matrix).

Using the material properties of graphite T300 fiber and Al 6061 matrix, the following stress field

was obtained for the composite subjected to a uniform temperature change, A T.

Table 5.4 : Stress comparison for a uniform temperature change

(Mikata and Taya's results and present analysis)

Normalised Fiber Matrix (at interface)

stress

o1/AT C0/AT oz/ AT oYWAT %O/A ozAT

M & T 8.855 8.855 5.703 8.855 -8.855 5.084

E+4 E+4 E+6 E+4 E+4 E- 10

Present 8.855 8.855 5.703 8.855 -8.855 -1.425

E+4 E+4 E+6 E+4 E+4 E-02

5.7 SUMMARY

Generally speaking, very good agreement has been obtained between our results and the

analysis of other researchers in the field. What is specially to be noted is the fact that a model has

been developed to predict the effective thermoelastic properties of multidirectional coated fiber

composites and the solution to the stress distribution has been obtained under a uniform
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three-dimensional mechanical and/or non-mechanical loading. It is therefore very encouraging to

observe that the analysis does reduce down to the available exact solutions for some of the simpler

cases. This has therefore given us reasonable confidence and we can proceed to use this program for

the analysis and parametric study of fiber reinforced composite materials.

5.8 THE NDSANDS PROGRAM

Miecromechanical considerations in composite materials may require the use of a practical

tool that can handle different constituent materials, arbitrary fiber orientations and multi-axial loading

conditions. To address these requirements, the computer code called NDSANDS (N Directional

Stiffness A N P Strength) has been developed. A flow chart of the program is given in Figure 30.

As seen from the diagram, the program can be used either to analyze a composite or to conduct

parametric study. By parametric study what is meant is that the user can change either a material

property or the geometry of the composite, one single variable at a time while the remainder

are kept constant, and thereby examine the change in effective properties and stress distribution as a

result of different input values of the parameter selected. When changing the material property, we

must insure that both the stiffness and compliance matrices remain positive definite at all times [50].

Description of the Computer Program

The computer code NDSANDS was modified sc' that it could be implemented on a

IBM PC and generalised so that it became more efficient, user friendly and easily menu driven.

What follows is a brief description of some of the procedures that were incorporated in the original

program.

i) Data files FIBRE, SHEATH, MATRIX and PARTICLE which enlisted the complete

set of property characterization for each one of the constituents, were created. This data is intended

to be of value primarily in the preliminaryt selection of materials to fulfill the requirements of

anticipated aerospace applications. A comprehensive list of the constituent properties is given in the

next section.
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ii) By a suitable choice of constituent material from each one of the material libraries, and

by specifying the geometric variables, such as radii, orientation angles etc., the user can create

his/her own composite. At present, one can choose two different types of fibres and two different

types of sheath materials and specify a maximum of ten different orientations of the fiber.

iii) A maximum of five different composites can be analyzed simultaneously. Their

effective thermoelastic properties are calculated and presented in a tabular form so that direct

comparisons can be made. The stress distribution under an externally applied general

three-dimensional mechanical loading and/or non-mechanical loading (specify AT, the temperature

difference, and thereby calculate the thermal load or specify AC, the concentration difference, and

calculate the hygrothermal load) could then be determined.

iv) The stress analysis can be carried out either in cylindrical or cartesian coordinates

depending upon the user input. The computed stress components can be listed in a table or can be

plotted. It is upto the user to define the grid points for listing the stress components or give the plot

specifications if he/she is interested in seeing the graphs. At present, one can plot either at a constant

radius (with variable angle) or at a constant angle (with variable radius). The user can change the

number of grid points for listing or the plot specifications at any time when needed. Using the

optimization routine, COMPLEX (FUNK), the location where each one of the stress component

(cylindrical or cartesian) exhibits a maximum or a minimum can be further determined.

v) The maximum stress criteria has been incorporated into the model to predict the initial

or first failure of the composites. This criteria is applied by calculating the strength/stress ratio for

each stress component. The lowest strength ratio controls the failure of the composite. Similar to

the stress components, the user has the option to list, optimize or plot any or all of the strength

ratios.

vi) Once the effective thermoelastic properties of the composite have been calculated, the
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user has the option of changing mechanical, thermal or hygrothermal loads without having to

recalculate the effective properties. The original program could handle only one loading condition

applied to a single composite, whereas, now with the present routine, five different composites can

be analysed simultaneously under different loading conditions.

vii) Finally, the computer code NDSANDS has been set up to conduct parametric study.

A composite, as already pointed out, is created by choosing constituent materials and by specifying

the geometric variables. In this part of the study, the user can change either the material property or

the geometry of the composite, and analyse the change in effective properties and stress distribution

by inputting five different values for the parameter selected. We have also modified the code to plot

the effective properties of the composite selected for analysis as a function of the parameter under

consideration so that the influence of the variable could be easily discerned.

5.9 NUMERICAL RESULTS AND DISCUSSION

The second phase of the project was associated with the actual analysis of some of the

advanced composite materials available. We were specially interested in analysing composites

intended for high temperature applications.

In the general theory developed in first section of this report, the fiber and the coating are

transversely isotropic characterized by five independent elastic constants, whereas, the matrix is

isotropic in nature, and needs only two constants for material specification. Besides the elastic

properties, we are also interested in knowing the hygrothermal properties such as coefficient of

thermal expansion, moisture expansion, thermal conductivity, etc., of the constituents to predict the

effective thermo-elastic properties of the composite. Finally, in order to calculate the strength ratios

and thereby predict the initial or first failure, strength characterization in the longitudinal and

transverse directions, both , under tension and compression, as well as the behaviour in shear, is

required to be known, for all the concerned phases.
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Thus, for a transversely isotropic constituent, we need a total of sixteen properties to

carry out the study. An extensive literature survey was therefore undertaken to obtain a complete set

of data for each phase. One of the major problems which we encountered while carrying out this

survey was how to compile the elastic, thermal and strength properties of different constituents. In

most of the reported literature, studies have been undertaken on only one aspect of the problem, say

the elastic property, and the remaining two have either been ignored or not mentioned at all.

What follows now is the data that we were able to get together for different phases after

an exhaustive search [51 - 77]. It should be pointed out that it is still not complete. This results from

a lack of extensive testing of a given material and also from the sensitivity of the properties of

different materials to fabrication and test techniques, so that comparison of data from various sources

was difficult. This data is intended to be of value primarily in the preliminary selection of materials.

It has been compiled to assist the designer in selecting and specifying one or more material that

appears to fulfill the requirements of anticipated aerospace applications.
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5.5 PROPERTY TABLES

FIBER TABLE - 1

FIBER NAME T300(Gr) Modmor I AS4(Carbon) Boron

PROPERTIES

ET(Psi) 0.3190E+07 0.2170E+07 0.2030E+07 0.6547E+08

EA(Psi) 0.3277E+08 0.3370E+08 0.3408E+08 0.5405E+08

NUT : 0.4200E+00 0.4900E+00 0.2500E+00 0.1210E+00

NUA 0 0.3000E+00 0.2790E+00 0.2000E+00 0.1300E+00

GA(Psi) 0.7003E+06 0.3480E+07 0.4008E+07 0.2742E+08

ALFAT(1/AF) 0.1500E-04 0.5000E-05 0.1000E-04 0.2700E-05

ALFAA(1/0F) -0.8340E-06 -0.2000E-06 -0.2000E-06 0.2700E-05

BETAT(I/%M) 0.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00

BETAA(1I/%M) O.OOOOE+00 O.OOOOE+00 0.OOOOE+00 0.OOOOE+00

MUT(Btu/hr-ft-OF) 0.4831E+01 0.3750E+01

MUA(Btu/r-ft-OF) 0.483 1E+02 0. 1386E+02

LULT(Psi) 0.4408E+06 0.4250E+06 0.5207E+06 0o4600P+06

LULC(Psi) 0.3335E+06 0.3335E+06 0.6000E+06

TULT(Psi) 0.4500E+05 0.5076E+05 0.3300E+06

TULC(Psi) 0.3000E+05

LS(Psi) 0.6000E+04 0. 1200E+05
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FIBER TABLE -2

FIBER NAME E-Glass AS (Graphite) S2-Glass Beryllium

PROPERTIES

ET(Psi) 0.1053E+08 0.2000E+07 0.1250E+08 0.4200E+08

EA(Psi) 0.1053E+08 0.3200E+08 0.1250E+08 0.4200E+08

NUT 0.2200E+00 0.2500E+00 0.2200E+00 0.3000E-01

NUA 0.2200E+00 0.2000E+00 0.2200E+00 0.3000E-01

GA(Psi) 0.4316E+07 0.5000E+07 0.5100E+07 0.2040E+08

ALFAT(I/OF) 0.2780E-05 O.5000E-05 0.2780E-05 0.6450E-05

ALFAA(I/OF) 0.2780E-05 -0.2000E-06 0.2780E-05 0.6450E-05

BETAT(1/%M) O.OOOOE+OO 0.0000E+00 O.OOOOE+00 O.OOOOE+00

BETAA(I/%M) O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00

MUT(Bw/hr-ft-OF) 0.6250E+00 0.4831E+01 0.4830E+00 0.8455E+02

MUA(Btakhr-ft-OF) 0.6250E+W 0.4831E+02 0.4830E+00 0.8455E+02

LULT(Psi) 0.4979E+06 0.4500E+06 0.7000E+06 0.1300E+06

LULC(Psi) 0.7250E+05 0.3335E+06 0.7250E+05 0.1400E+06

TULT(Psi) 0.4979E+06 0.5000E+05 0.7000E+06 0.1300E+06

TULC(Psi) 0.7250E405 0.7250E+05 0.1400E+06

LS(Psi) 0.2500E+06 0.2500E+05 0.3500E+06
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FIBER TABLE - 3

FIBER NAME Nicalon AVCO HM(Carbon)

PROPERTIES

ET(Psi) 0.2900E+08 0.6000E+08 0.1500E+07

EA(Psi) 0.2900E+08 0.6000E+08 0.5200E+08

NUT 0.2987E+00 0.25001+00 0.3600E+00

NUA 0.2987E00 0.2500E+00 0.2600E+00

GA(Psi) 0.1117E+08 0.2400E+08 0.2090E+07

ALFAT(I/OF) 0.1778E-05 0.2330E-05 0.4390E-05

ALFAA(I/OF) 0.1778E-05 0.2330E-05 -0.4230E-06

BETAT(1/%M) 0.0000E+00 O.OOOOE+00 0.0000E+00

BETAA(1/%M) O.OOOOE+00 0.0000E+00 0.0000E+00

MUT(Btu/br-f-OF) 0.6710E+01 0.2367E+02

MUA(Btu/hr-ft-OF) 0.6710E+01 0.2367E+02

LULT(Psi) 0.4000E+06 0.5000E+06 0.2700E+06

LULC(Psi) 0.2560E+06 0.2559E+06 0.2900E+06

TULT(Psi) 0.4000E+06 0.5000E+06

TULC(Psi) 0.2560E+06 0.2559E+06

LS(Psi)
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SHEATH TABLE

SHEATH NAME Ni SiC Polyimide Carbon

PROPERTIES

ET(Psi) 0.3001E+08 0.7003E+08 0.4522E+06 0.1320E+07

EA(Psi) 0.3001E+08 0.7003E+08 0.4522E+06 0.1320E+07

NUT 0.3100E+00 0.1900E+00 0.3300E+00 0.1100E+00

NUA 0.3100E+00 0.1900E+00 0.3300E-0 0.1100E+00

GA(Psi) 0.1145E+08 0.2943E+08 0.1700E+06 0.5946E+06

ALFAT(I/OF) 0.7390E-05 0.2411E-05 0.3000E-04 0.1220E-05

ALFAA(1/OF) 0.7390E-05 0.241 IE-05 0.3000E-04 0.1220E-05

BETAT(1I/%M) 0.OOOOE+00 0.OOOOE+00

BETAA(1/%M) 0.OOOOE+00 0.OOOOE+00

MUT(Btu/hr-ft-OF) . 0.1700E+01 0.1200E+03

MUA(Bthr-ft-OF) : 0.1700E+01 0.1200E+03

LULT(Psi) 0.4596E+05 0.8004E+05 0.5600E+04

LULC(Psi) : 0.7600E+04

TULT(Psi) 0.4596E+05 0.8004E+05 0.5600E+04

TULC(Psi) . 0.7600E+04

LS(Psi) 0.2920E+04
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MATRIX TABLE

MATRIX NAME : EPON 828 H3501-6 X7002-T6(A1) Graphite

PROPERTIES

E(Psi) : 0.4200E+06 0.6200E+06 0.1037E+08 0.141 OE+07

G(Psi) : 0.1560E+06 0.2300E+06 0.3900E+07 0.6350E+06

ALFA(1/OF) : 0.2667E-04 0.2272E-04 0.1334E-04 0.3340E-05

BETA (I/%M) : 0.3200E-02 0.3200E-02

MU(Btmjhr-ft-0 F) : 0.1420E+00 0.1420E+00 0.1280E+03 0.1200E+03

ULT(Psi) : 0.1025E+05 0.1200E+05 0.5400E+05 0.3000E+04

ULC(Psi) : 0.2610E+05 0.3000E+05 0.6750E+05 0.7600E+04

S(Psi) : 0.5125E+04 0.6000E+04 0.3240E+05 0.3000E+04

MATRIX NAME : A 277-15(P) Al 6061 SiC E-Glass

PROPERTIES

E(Psi) : 0.7330E+06 0.9947E+07 0.5600E+08 0. 1050E+08

G(Psi) . 0.3330E+06 0.3698E+07 0.244 1E+08 0.4303E+07

ALFA(1/OF) 0.1305E-04 0.2500E-05 0.1583E-04

BETA (I/%M)

MU(Btu/hr-ft-OF) 0.1200E+03 0.2367E+02 0.2050E+00

ULT(Psi) 0.3330E+04 0.4495E+05 0.2250E+05 0.1 150E+05

ULC(Psi) 0.6670E+04 0.8200E+05 0.3400E+05

S(Psi) . 0.6010E+04 0.3000E+05 0.5750E+04
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MATRIX NAME : ATJS(Carbon) Cer-VIT Zinc Bromide Al Oxide

PROPERTIES

E(Psi) : 0.1320E+07 0.1340E+08 0.3632E+08 0.4500E+08

G(Psi) : 0.5946E+06 0.5317E+07 0.1600E+08 0.1800E+08

ALFA(I/OF) : 0.1220E-05 0.3300E-05

BETA (1/%M)

MU(Btu/hr-ft-OF) 0.1200E+03 0.9670E+00 0.1500E+02 0.1500E+02

ULT(Psi) . 0.5600E+04 0.1900E+06 0.2250E+05 0.4000E+05

ULC(Psi) 0.7600E+04 0.2000E+06 0.3500E+06

S(Psi) 0 0.2920E+04 0.6500E+05 0.4000E+05

MATRIX NAME Titanium Mg Oxide LAS III PMAS III

PROPERTIES

E(Psi) . 0.1500E+08 0.2832E+08 0.1276E+08 0.1537E+08

G(Psi) . 0.5770E+07 0.1200E+08 0.5221E+07 0.6236E+07

ALFA(l/OF) 0.5000E-05 0.8334E-06 0.1500E-05

BETA (1/%M)

MU(Btu/hr-ft-OF) 0.9660E+01 0.2500E+02

ULT(Psi) : 0.1350E+06 0.1400E+05

ULC(Psi) 0.2000E+06

S(Psi) 0.2400E+05
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MATRIX NAME 1723 Glass MAS-LZN 7052 Glass 7050 Glass

PROPERTIES

E(Psi) 0.1276E+08 0.1500E+08 0.8200E+07 0.8700E+07

G(Psi) 0.5221E+07 0.6250E+07 0.3361E+07 0.3566E+07

ALFA(I/OF) 0.2889E-05 0.4300E-05 0.2872E-05 0.2967E-05

BETA (1/%M)

MU(Btu/hr-ft-OF)

ULT(Psi) 0.5000E+04

ULC(Psi) O.lO00E+06

S(Psi)

MATRIX NAME 7070 Glass 7740 Glass 1720 Glass 9741 Glass

PROPERTIES

E(Psi) 0.7400E+07 0.9100E+07 0. 1270E+08 0.7200E+07

G(Psi) 0.3033E+07 0.3792E+07 0.5121E+07 0.2927E+07

ALFA(I/OF) 0.2167E-05 0.1944E-05 0.2789E-05 0.2722E-05

BETA (1/%M)

MU(Btu/hr-ft-OF)

ULT(Psi)

ULC(Psi)

S(Psi)
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MATRIX NAME CAS I

PROPERTIES

E(Psi) 0.1276E+08

G(Psi) 0.5221E+07

ALFA(1/OF) 0.2777E-05

BETA (I/%M)

MU(Bwjhr-ft-OF)

ULT(Psi)

ULC(Psi)

S(Psi)

PARTICLE TABLE

PARTICLE NAME WC Glass Quartz sand

PROPERTIES

E(Psi) : 0.1020E+09 0.1020E+08 0.1067E+08

G(Psi) : 0.4180E+08 0.4215E+07 0.4269E+07

ALFA(l10F)

BETA (1/%M)

MU(Btuutr-ft-OF)

ULT(Psi)

ULC(Psi)

S(Psi)
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5.10 ILLUSTRATIVE PROBLEM

We now consider a three-dimensional fibrous composite by arranging six fibers parallel

to the six lines joining the opposite vertices of a regular icosahedron. These six axes can be oriented

with reference to an orthogonal cartesian coordinate system xI x2 x3 as follows: one pair in the xIx 2

plane making angles of 0 with the xl-axis, one pair in the x2 x3 plane making angles of 0' with

the x2-axis, and one pair in t he x3 x1 plane making angles of 0' with t he x3-axis, where 0'

- tan-I( 2 sin 180) = 310 43'.

As shown by Rosen and Shu [77], this type of arrangement gives rise to local isotropy.

The isotropic relation G = E / [2.0 (1.0 + v )] can be used as an independent check of the model. In

general, this relation is not satisfied exactly in the present analysis, however the error is very small.

The results for the Nicalon fiber and BMAS matrix system are shown in table 5.6. Also shown in the

table is the effect of different coating thicknesses and coating materials on the effective thermoelastic

moduli. The fiber volume fraction was set at 30% but the ratio of coating thickness to the cylinder

outer radius, defined as ( r2 - r1 ) / r3 , was treated as an independant variable.

As seen from table 5.6 below, both carbon and polyimide coatings, because of their

lower elastic moduli compared to the BMAS matrix, reduce the effective elastic properties, whereas,

nick-,l, with a higher moduli, adds to the reinforcement. The thermal expansion coefficient of the

composite, on the other hand, is influenced more by nickel and polyimide coatings because of the

larger degree of mismatch between the constituents.

The microstress distribution within the constituents, for a multidirectional fiber

composite, in general, depends both on the type of loading and the fiber orientation. As an

approximation, the curing or residual stresses can be estimated by subjecting the composite to a
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uniform temperature change. For the specific three-dimensional composite under consideration,

the stress distribution remains identical for the six fiber orientations for a unit degree cool down.

In this problem, the only non-zero stress components predicted by the present model are ir , a0 and

,Z. The stress concentration is a function of both Young's modulus and the thermal expansion

coefficient of the coating, besides its thickness. The effect of different coating materials and/or

thicknesses on the stress concentrations is quite dramatic. These trends are illustrated in tables

5.7 (a), 5.7 (b) and 5.7 (c) for the components 0 r, a0 and yz , respectively.

The radial stress component at the interface can be considered as a failure criteria for

debonding, e.g., a negative value of cr proLotes contact between the constituents, whereas, a

positive value suggests possible separation and initiation of debonding at the boundary. It is seen that

a 'thick' coating of a 'soft' material with a 'low' coefficient of thermal expansion helps in reducing

the stress concentration factor at the boundary. Within the coating, the algebraic maximum hoop

stress occurs at the fiber-coating interface, whereas, in the matrix, the maximum occurs at the

coating-matrix interface. Even though the polyimide coating has a low elastic modulus (3.1 GPa),

but because of its high coefficient of thermal expansion ( 54 x 10-6 / 0 C ), the magnitude of the

constituents stress components for the Nicalon/Polyimide/BMAS composite are still large in

magnitude for a unit degree cool down.

To conclude, it is apparent that generally a reduction in the stress concentration can be

made at the expense of the elastic moduli of the composite. Further, by a proper choice of coating

thickness, modulus and coefficient of thermal expansion, the stress component of interest, which is

instrumental in causing a specific mode of failure, can be controlled.
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TABLE 5.6: Three-dimensional I isotropic ' composite, effective moduli

Coating thickness Composite system E v G a

Cylinder outer radius (GPa) (GPa) (10-6/0C)

0 Nicalon/BMAS 128.16 0.250 51.25 2.89

Nicalon/Nickel/ 129.11 0.251 51.60 3.04

BMAS

0.01 Nicalon/Carbon/ 118.06 0.243 47.50 2.88

BMAS

Nicalon/Polyimide/ 106.01 0.249 42.45 3.24

BMAS

Nicalon/Nickel/ 138.72 0.259 55.10 4.45

BMAS

0.10 Nicalon/Carbon/ 80.20 0.217 32.94 2.84

BMAS

Nicalon/Polyimide/ 65.93 0.234 26.72 4.76

BMAS
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TABLE 5.7 (a): Stress component aY in the fiber-coating and coating-matrix

interface for AT = -10 C

coating thickness Composite system (adf (ar)c.m

cylinder outer radius (KPa) (KPa)

0 Nicalon/BMAS 26.4 26.4

Nicalon/Nicke!/ -8.98 44.9

BMAS

0.01 Nicalon/Carbon/ 22.8 22.3

BMAS

Nicalon/Polyimide/ 104.0 107.0

BMAS

Nicalon/Nickel/ -290.0 140.0

BMAS

0.10 Nicalon/Carbon/ 8.54 5.95

BMAS

Nicalon/Polyimidel 293.0 306.0

BMAS
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TABLE 5.7 (b) : Stress component a 0 (algebraic maximum) in the fiber, coating

and matrix for AT = -10 C

coating thickness Composite system ('0 ) (aO) ¢  (ao)m

cylinder outer radius (KPa) (KPa) (KPa)

0 Nicalon/BMAS 26.4 - -55.6

Nicalon/Nickel/ -8.98 3020.0 -97.5

BMAS

0.01 Nicalon/Carbon/ 22.8 -7.46 -50.7

BMAS

Nicalon/Polyimide/ 104.0 289.0 -163.0

BMAS

Nicalon/Nickel/ -290.0 2720.0 -407.0

BMAS

0.10 Nicalon/Carbon/ 8.54 -9.63 -32.0

BMAS

Nicalon/Polyimide/ 293.0 383.0 -494.0

BMAS
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TABLE 5.7 (c): Stress component oz in the fiber, coating and matrix for AT = -10 C

coating thickness Composite system (tz)f  (0z) c  (Gz)m

cylinder outer radius (KPa) (KPa) (KPa)

0 Nicalon/BMAS 77.9 - -26.9

Nicalon/Nickel/ 26.3 3060.0 -48.4

BMAS

0.01 NicalonlCarbon/ 77.9 -4.52 -25.5

BMAS

Nicalon/Polyimidel 54.9 288.0 -69.7

BMAS

Nicalon/Nickel/ -424.0 2590.0 -248.0

BMAS

0.10 Nicalon/Carbon/ 76.9 -5.99 -21.0

BMAS

Nicalon/Polyimidel -136.0 377.0 -262.0

BMAS
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5.11 CONCLUDING REMARKS

In summary, we have developed a first order ideal material model to approximate the

elastic response of a composite body reinforced by coated fibers oriented in various directions. The

coating can either be applied intentionally to achieve the desirable composite properes or it can occur

due to the processing conditions involved in the composite manufacture. We have further

demonstrated, through a parmetric study, how an applied coating modifies the micro stress

distribution and the elastic properties of a three-dimensional Nicalon/BMAS system. The model can

be used to provide material guidance to control the micromechanical failure modes. In conjunction

with a disciplined experimental program, studies such as those conducted here, can be employed to

direct further improvements in the model, such as the capability to handle discontinuity of some of

the traction and /or displacement components at the boundary. This formulation will be the subject of

future work to be undertaken.
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MAIN PROGRAM 1 initial program data

and read element data
2 CALL MATPRO SUBROUTINE

:input material property

3 CALL GAUSPT SUBROUTINE
INPUT SUBROUTINE :input GAUSS points

IBCALL GLOBAQ

1 CALL DMATPS
/ CALL LOCAQ

2 CALL SFR2 : input shape function

STIFFNESS SUBROUTINE'0 3 CALL JACOB : calculating

transformation matrix

IF 1 if body forces exist then CALL BODYF

LOADPSSUBROUTINEI 2 if transversed loads exist thenR IN CALL LOADPB subroutine

3 if edge loads exist then CALL EDGEF

1 pre-frontal data and boundary code

FRONTAL SUBROUTINE are coded first

2 standard frontal procedure is coded

4

END of PROGRAM
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DEFINITION OF THE NOTATION

NFIA, NFIB input files unit

NFOA, NFOB output files unit

NFOC, NFOD

MELEM maximum element number per layer

MPOIN maximum node number per layer

MPLY total number of plies

MDIME maximum number of dimension

NDOFP maximum degree of freedom per node at local region.

MGASP maximum number of Gauss Integral points

MEVAB maximum dimension of stiffness matrix in element level

MFRON maximum frontal size

MTOTV total maximum variable number

MNODE maximum number of nodes per element

DATA FROM UNIT = NFIA

BLOCK A
VARIABLE =

XL XY NX NY NARIDX NGRZDY IDGL KSTRAN

This block read grid data and number of plies of the structure.

XL X coordinate

YL Y coordinate
NX : number of nodes per side in X direction

NY number of grids per side in Y direction

NGRIDX number of grid in X direction

NGRIDY number of grid in Y direction

IDGL total number of plies of the structure

KSTRAN
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BLOCK B
VARIABLE =

JLIPA INCT

This block data use to determine the shape function is linear or parabolic function.

JLIPA I linear shape function

2 quadratic shape function

INCT increment

BLOCK C
VARIABLE =

NVFIX NCASE NTYPE NNODE NDOFN NMATS

NPROP NGAUS NDIME NSTRE

This block read some control data including material, dimension, ingeration, boundary and
load control data.

NVFIX total number of boundary points

NCASE number of load case

NTYPE parameter for output

NNODE number of nodes per element

NDOFN total degree of freedom per element

NMATS parameter for different material region

NPROP number of material properties

NGAUS number of gauss point

NDIME number of dimension

NSTRE dimension of stress vector
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BLOCK D
VARIABLE=

NUMEL MATNO LNDDS

This block read material ID and element connectivity.

NUMEL element number

MATNO region ID

LNODS element connectivity vector

BLOCK E
VARIABLE =

I LPSN

This block read element ID and element connectivity for linear case

I element ID

LPSN element connectivity vector

BLOCK F
VARIABLE =

IPOIN COORD

This block read nodes coordinates

IPOIN node ID

COORD node coordinates vector

1
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BLOCK G
VARIABLE =

NOFIX IFPRE PRESE KODE

This read general boundary condition code

NOFIX : node number

IFPRE prescribed code

1 : prescribed displacement or load

2 : not prescribed

PRESC : prescribed value

KODE index of node

1 : 1 degree of freedom per that node

3 : 3 degree of freedom per that node

6 : 6 degree of freedom per that node

BLOCK H
VARIABLE =

NOEND IEND ENDPS KCOD

This block read boundary code for last plies or last layer of symetry structure

NOEND index number

KJEND : prescribed code

I : prescribed displacement or load

0 : not prescribed

ENDPS prescribed value of displacement or load

KCOD : index of node

I I degree of freedom of that node

3: 3 degree of freedom of that node

6: 6 degree of freedom of that node
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DATA FROM UNIT = NFIB

BLOCK I
VARIABLE =

NPLY NOROPG NGROPL NINDEX

This block read group data

NPLY total number of group

NGROPG : total number of global group

NGROPL : total number of local group

NINDEX

BLOCK J
VARIABLE =

NGS NGE NLSE

This block read control data for global and local region

NGS starting layer number of global vector

NGE ending lay number of global vector

NLSE starting layer number of local vector

BLOCK K
VARIABLE -

JPLY IGLCOD PROPS

This bolock read ply geometry and properties

JPLY ply ID

IGLCOD region ID

PROPS material properties vector including angle, thickness, modulus poisson ration
shear modulus
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Figure 23. Comparing Normal Stress (at Mid-surface) of Different
Geometry Parameter for Stretch Load
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Figure 24. Comparing Normal Stress (at 0/90 Interface) of Different
Geometry Parameter for Stretch Load
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Figure 25. Comparing Shear Stress (at 0/90 Interface) of Different
Geometry Parameter for Stretch Load
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Figure 26. Theoretical Micro-mechanics Model
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Figure 27. Composite and Equivalent Body Cbaracterization
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Figure 28. Case of Uniaxial Tension
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Figure 30. Flow Chart for Micro-mechanics Calculations
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